

SELENIUM ATTENUATION VIA REDUCTIVE PRECIPITATION IN DIVERSE SATURATED AND UNSATURATED SUBSURFACE CONDITIONS

David Silverman¹, Mike Hay¹, Gaston Leone¹, Bart Wilking²

¹Arcadis, U.S, ²Nu-West Inc.

May 9, 2018

Outline

- Idaho phosphate mining and selenium (Se) impacts
- Se release and attenuation
- Conceptual site model
- Case studies
- Conclusions and implications

© Arcadis 2017

Phosphate Mining in SE Idaho

- Western Phosphate Field
- Meade Peak Member of Phosphoria Formation source of phosphate ore
 - Se content up to 1,040 mg/kg (World Shale average ~ 1 mg/kg)
 - Enriched in other metals (e.g., As, Cd, Cr, V)
- Mining-related surface water / groundwater impacts
 - Local and regional

• Area-wide and site-specific investigations

3

Se Release and Attenuation

- Oxidative dissolution of Se
 - Sulfides/selenides, elemental Se, organic matter
 - Groundwater, seeps > 1 mg/L
- Sulfide oxidation → release of SO₄, divalent metals
 - Abundant buffering capacity, neutral pH
- Reduction to elemental Se, selenides
 - Biotic and abiotic (slow) processes
 - Requires actively reducing conditions
 - Immobilization of Se (re-oxidation slow)

© Arcadis 2017

4

Column Testing Data

- Saturated vs. unsaturated tests
- Correlation between leached Se and SO₄
- Much lower Se:SO₄ ratio for saturated columns
 - Less oxidative dissolution
 - Se reduction

Se:SO₄ ratios can be used to identify Se reductive precipitation

© Arcadis 2017

ARCADIS Design & Consultancy for natural and built assets

17 May 2018 6

Overview of Sites

© Arcadis 2017

17 May 2018 7

Se Reduction in Shallow Alluvium, Wetland Environment

- Site impacts
 - Seeps: Se up to 1.46 mg/L
 - Oxic alluvial groundwater: Se up to 0.7 mg/L
- Isolated natural reducing conditions
 - Wetlands along Goodheart Creek
 - DO, Fe, Mn, seasonally variable
 - Low Se, high SO₄
- Se reduction in groundwater below wetlands

© Arcadis 2017

17 May 2018 8

Se Reduction in Mine Pit Backfill

- Saturated pit backfill vs external waste dump
- Se, SO₄ release in external waste groundwater
- Reducing conditions in pit backfill
 - Low DO, elevated Mn and Fe
 - Low Se, high SO₄
 - Se reduction
- Waste rock configuration is key © Arcadis 2017

Se Reduction in Shale Bedrock below Pit

- Impacted SW, infiltration
 - Se up to 0.74 mg/L
- Infiltration to Bedrock groundwater
 - Phosphatic shale member
 - Dolomite (Grandeur Tongue Member)
- Se reduction in shale member, where conditions suboxic

Se Reduction in Unsaturated Waste Dump

- Impacted seeps, alluvial and bedrock GW on margins of dump
- Comparison between bedrock below, downgradient of dump
- Downgradient of dump, diluted impacts
- Below dump, diluted attenuated impacts

© Arcadis 2017

Conclusions and Implications

- Se reduction to below levels of concern observed in diverse subsurface conditions in the Phosphate Patch
- Improves conceptual understanding of Se dynamics in environment
- Opportunities to harness natural process
 - Mine planning /reclamation
 - Mine remediation

