# Knight Piésold

Adding Value. Delivering Results.

# Stillwater

#### Tailings Impoundment Closure Enhancement

Craig Hall, Amy Adams, Ken Brouwer, Randy Weimer

# Outline

Project Overview Tailings Characterization Closure Cap Closure Enhancement Summary



# **Project Overview**



#### **Stillwater Mine, Montana**

#### Hertzler Tailings Impoundmen

Stillwater County 

- 5 miles southeast of Nye, MT
- **Underground Platinum** and Palladium mine

Stillwater Mine



# Stillwater Mine, Montana

#### **Project Overview**



# **Nye Tailings Impoundment**

#### **Impoundment Section**

- Embankment Height: 138 ft.
- Crest Width: 40 to 50 ft
- Downstream Slope: 1.7H:1V to 2H:1V (overall)
- 100 mil HDPE geomembrane to minimize seepage and contain tailings



#### Nye Tailings Impoundment Closure Objectives

- Long-term public safety
- Protect air, surface water and groundwater resources
- Stable cover with long-term vegetation community
- Provide operational flexibility until final closure of the mine site



# **Nye Tailings Impoundment**

Existing Closure Arrangement (for bonding)

- 4 ft. thick closure cap
- Surface water from closure cap reports to closure spillway at north end of impoundment
- Surface of facility revegetated



# Nye Tailings Impoundment

#### 'New' Closure Opportunities

- Provide storage for waste rock
- Reduce the need for additional disturbance
- Promote further consolidation, densification, and dewatering of the tailings



# **Tailings Characterization**



#### **Site Investigation Locations**



- 24 SCPTs
- 10 geotechnical drillholes
- 2 vibrating wire piezometers

## **Site Investigations**

SCPTs, Insitu Testing, Undisturbed Sampling

#### **Amphibious SI Program**

- Exposed tailings surface
- 12 SCPTs, 4 Drillholes, 2 VWP's



#### Barge SI Program

- Operating pond area
- 12 SCPTs, 6 Drillholes



### Tailings Characterization In Situ Conditions



South

Knight Piésold

North

13

### Tailings Characterization In Situ Conditions





Tailings slimes sample from SCPT-18-08, 33 ft. to 53 ft. below tailings surface

#### **Tailings Characterization**

Downhole Plot – Slimes Tailings (SCPT18-08)



#### Tailings Response

- Increase effective stress on tailings (weight of waste rock)
- Tailings consolidate as pore pressures dissipate
- Increased density and decrease in water content



Density Increases & Water content Decreases





\*Data based on experience at other projects

# **Tailings Characterization**

CPT Downhole Plot – Sandy Tailings (CPT16-12)





#### 'New' Closure Cap Arrangement



#### **Typical Section**

- 4 ft. thick waste rock cap placed over geosynthetic reinforcement layer
- Geomembrane protection layer to be installed over the existing HDPE geomembrane liner



### **Closure Cap Staging**



#### **Closure Cap Staging**





#### **Objectives and Opportunities**

- Waste rock currently stored at the East Waste Dump
- Waste rock can be used to cap the Nye Tailings Impoundment to develop a stable postclosure landform
- Potential to store additional waste rock on and/or adjacent to the closed Nye Tailings Impoundment
- Provide further tailings consolidation, increase density of in place tailings and enhance stability of the post closure landform



#### **Conceptual Arrangement**



#### Waste Rock Consolidation Loading

- Increase density at depth
- Consolidation will be a function of time and drainage (accelerated with wick drains)
- Improved drainage will enhance stability during ongoing waste rock placement



#### Effect of Additional Waste Rock Placement

- Further reduction in moisture content and increase in density
- Higher loads required to achieve similar effect as Closure Cap at depth



# Summary



# Summary

- The Nye Tailings Impoundment continues to provide secure storage of fine grained tailings
- Placement of the Closure Cap will consolidate and densify the saturated fine grained tailings.
- Increasing the Closure Cap thickness will enhance the stability of tailings impoundment and allow for additional waste rock to be integrated into the post closure landform
- Key benefits include:
  - Reduced mine footprint due to waste dump integration with closed tailings impoundment
  - Dense non-flowable tailings result in Low consequence dam safety classification for a hypothetical dam breach post closure
- Closure of the impoundment is being developed with Sibanye-Stillwater and their stakeholders. This is recognized as the best technology and best practice for closure of the Nye Tailings Impoundment.



#### Craig Hall, P.Eng.

Specialist Geotechnical Engineer | Associate Knight Piésold Ltd. chall@knightpiesold.com