Location Evaluation and Maximizing Flexibility of a Waste Consolidation Area

CDM Smith

Coeur d'Alene Trust

- In December 2009, U.S. EPA announced the largest Superfund settlement in U.S. EPA history. The U.S. EPA settled with ASARCO for \$1.7 Billion for cleanups across the country.
- \$494 Million toward the cleanup of the Bunker Hill Superfund Site
- Settlement funds were placed in a Successor
 Coeur d'Alene Custodial and Work Trust (Trust)

Getting Started

What is the problem?

 Waste rock and tailings deposited high in the Coeur d'Alene Basin are the source of heavy metals (i.e., lead and zinc) contamination

Solution

- Remove the mine waste from its present location and place "high and dry"
- Start at the top of the basins and work down

East Fork Ninemile Creek Mine Waste

Where Does It Go?

Waste consolidation area location selection criteria:

- Close to remediation sites
- Large enough area to contain 1M to 3M CY mine waste
- Existing access roads present
- Potential clean soil and/or rock borrow source
- Free of complex land ownership issues
- Relatively flat
 - Waste will be stacked at 3:1 or flatter

Initially Proposed Waste Consolidation Sites

ESRI ArcGIS Slope Analysis

Google Earth

Nothing Beats a Site Visit!

Potential Site Selected

Review Site Selection Criteria

- Waste consolidation area location selection criteria:
 - **✓** Close to remediation sites
 - Y Free of complex land ownership issues
 - Existing access roads present
 - Relatively flat
 - Waste will be stacked at 3:1 or flatter
 - ✓ Potential clean soil and/or rock borrow source
 - Large enough area to contain 1M to 3M CY mine waste

EFNM Waste Consolidation Area

Design Criteria:

- Capacity 1.5M to 3M
- Maximize site flexibility
- Minimize impacts to surrounding environment
- Integrate rock and soil borrow needs
- Utilize existing roads
- Manage stormwater run-on

EFNM Waste Consolidation Area

Existing Conditions Evaluation:

- Access / property
 - One owner
- Rock source
 - 800K CY need over 10 years
- Soil borrow
 - 175K CY needed over 10 years
- Flat area large enough for WCA base
 - Slope analysis

Existing Conditions Slope Analysis – CIVIL 3D

Maximizing Buttress Efficiency

- Trial and evaluate
- Start small and work up
- North buttress
 - Size mostly restricted by existing conditions
- South buttress
 - Many different size variations
 - What is the best size?
- Geotechnical considerations
 - Buttress slopes 2H:1V →
 flexible buttress rock fill

Buttress Sizing – Trial and Evaluate

BUTTRESS SIZE NORTH BUTTRESS FILL VOLUME – 18,500 CY AVG TOP ELEV – 4,628'

SOUTH BUTTRESS FILL VOLUME – 2,500 CY AVG TOP ELEV – 4,570'

Buttress Sizing – Trial and Evaluate

Graph

- Volume (x-axis) vs. top of buttress elevation (y-axis)
- North buttress
 - Not really enough data there to make a clear cut decision
 - Need more data about volume of waste storage capacity created
- South buttress
 - Very clear definition of maximum size

SOUTH BUTTRESS

Buttress Size vs. Waste Capacity Trial

Buttress Size vs. Waste Capacity – Evaluate

- Graph
 - Buttress size (x-axis)
 - Waste capacity (y-axis)
- North buttress
 - The larger the better
- South buttress
 - Obviously the limiting factor
 - Cost benefit analysis
 - Pretty clear definition of beneficial size

EFNM WCA Final Configuration

Design Information

- Buttress
 - ~35K CY after topsoil stripping
- Rock / soil borrow
 - 400K CY of rock or more
 - Expandable and almost entirely outside of the WCA footprint
 - Soil Borrow 250K CY or more
- Capacity
 - 1.5M CY
 - Expansion to ~2M possible

Why is this important?

Tamarack, IC, Success WCAs

- Max Capacity
 - 300K 1.05M CY
- Surface Area
 - 9 24 Acres
- Average Depth
 - 21 FT
- Slopes
 - 1.5(H):1(V)
- Est. Min. Cost
 - \$28.40 / CY

EFNM WCA

- Capacity 1.5M CY
 - Expandable to 2M CY
- Surface Area
 - 24 Acres
- Average Depth
 - 39 FT
- Estimate Cost
 - \$17.12 / CY
- SAVINGS
 - \$17 M

Questions?

