TETRATECH Beal Mountain Mine

Leach Pad Problems, Investigation & Closure Plan

Mine Design, Operations & Closure Conference

May 1-5, 2011

Allan Kirk Mike Hatten Jim Maus Mary Beth Marks, USFS

General Location Map

Site Vicinity Map – Permit Area Boundary

Beal Mountain Mine - Facility Map

Beal Heap Leach Pad – looking west

77 acres 108 million gallon capacity 15-17 inches ppt per year

AN A REAL AND A LAND

Leach Pad Conceptual Construction

Leach Pad Problems

Excessive Water Accumulation and Water Balance Very Poor Water Quality

Solution Accumulation by Month

TABLE 3-10 RATE OF SOLUTION ACCUMULATION ON THE LEACH PAD BY MONTH	
Months of the Year	Millions of Gallons per Month
April	2.0 to 2.5
May and June	6.0 to 8.0
July and August	2.5 to 3.0
September through March	1.4
Total	28.8 to 34.3

Leach Pad – Monthly Precipitation vs. Volume Change

Drifted Snow North Side of Leach Pad

Leach Pad Water Balance Issues

- Water is of very poor quality and needs to be treated before discharge
- Water must be treated to maintain reasonable water levels on the pad (no overflow, minimize risk of failure)

RO Treatment

System

Heap Leach Pad Potential Excess Water Sources

Possibilities Leaking through geotextile cover on pad Water entering over the top of the bottom liner

Leach Pad Investigation

Dye Tracer Studies Cover Test Pits Perimeter Trenches GW Monitor Wells

SW Interceptor Ditch - Dye Tracer Investigation

LP Cover Test Pits

Cover Test Pits (wet and dry)

Water Level Relations – Cross Sections

Leach Pad Liner Investigation Silver Bow County, Montana FIGURE 7

LP Groundwater Monitoring Wells and Piezometers

Leach Pad Perimeter Trenches

LP Perimeter Trenches – North Side

Beal Leach Pad Perimeter Trench #2

Leach Pad Perimeter Trench #1 – Cross-Section Results

Spent Ore is Highly Transmissive

Existing Condition Schematic

TETRA TECH

PROPOSED SOLUTION

Beal Mountain Mine Design-Build

 US Department of Agriculture – Forest Service (USDA-FS) has contracted a comprehensive design-build team comprised of :

Construction Team (Prime Contractor)

Construction Team (Liner Installation Subcontractor)

Design Team (Technical Coordination/Engineering Design)

Design Components

Extended composite soil and GCL/Geodrain leach pad cover;

 Construction of a surface water diversion channel to direct water collected from the cover away from the leach pad;

 French drain to the north of the leach pad intercepting shallow groundwater and preventing it from entering the leach pad;

 Removal of the Detoxification Pond, regrading and construction of a composite soil/PVC leach pad cover system; and

Construct a new injection well for treatment system reject water.

Beal Mountain Mine – Site Plan View

Cover Liner Repair

- Liner Excavation along the northern edge of the Leach Pad
- Construction of the extended composite soil and GCL/Geodrain leach pad cover

Surface Water Diversion and Outflow Channel Objective

Provide adequate outlet for surface waters to be discharged away from the leach pad and prevent surface water infiltration into the leach pad.

French Drain Construction Objective

Intercept groundwater at an elevation below the top of the leach pad baseliner, divert groundwater away from the leach pad perimeter, and thus prevent groundwater infiltration into the leach pad during high groundwater events such as spring run off and high rainfall events.

Detoxification Pond

Detoxification Pond Reclamation Objective

Further eliminate another source of precipitation and surface water from infiltrating into the leach pad.

Injection Well Objective

Eliminate the potential for treatment system reject solution from exiting the leach pad base-liner containment.

Injection Well Placement Objectives

•Bottom of screen to be within previously saturated waste rock.

•Bottom of proposed well to be approximately 20 feet above bottom liner.

•Maximize distance to Leach Pad perimeter.

•Maximize distance Sump-1.

Injection Well Location and Construction

Beal Mountain Mine Design-Build Cost Estimate

Estimate is \$1,114,000

Questions?

Leach Pad - the Problem

Surface Water Diversion and Outflow Channel

