AMERICAN VANADIUM

THE CRITICAL ELEMENT

THE CRITICAL ELEMENT

TSX.V: AVC

AMERICAN VANADIUM

The Gibellini Project- Nevada A Unique New Type of Deposit Americas Only Primary Vanadium Mine

Alan Branham Director

Safe Harbour

American Vanadium Corp. (AVC) will strive to maintain the information in this presentation in an accurate and timely manner. However, the information contained in this presentation should not be solely relied upon when making investment decisions. AVC does not warrant or make any representations as to the accuracy, completeness or content of this information or any other information discussed or referenced in this presentation. This presentation contains statements which may be deemed to be "Forward-Looking Statements" within the meaning of Section 27A of the Securities Act of 1933, as amended and Section 21E of the Securities Exchange Act of 1934, as amended. We may also make written or oral forward-looking statements in our periodic reports, or in our annual report to shareholders, in our proxy statements, in our offering circulars and prospectuses, in press releases and other written materials and in oral statements made by our officers, directors, or employees to third parties. Statements that are not historical facts, including statements about our beliefs and expectations, are forward-looking statements. These statements are based on current plans, estimates and projections, and therefore you should not place undue reliance on them. Forwardlooking statements speak only as of the date they are made, and we undertake no obligation to update publicly any of them in light of new information or future events.

Forward-looking statements involve inherent risks and uncertainties. We caution you that a number of important factors could cause actual results to differ materially from those contained in any forward-looking statement.

Nevada

Sole US Primary Producer

Q4 2012 production target

5% of Global Production

Open pit

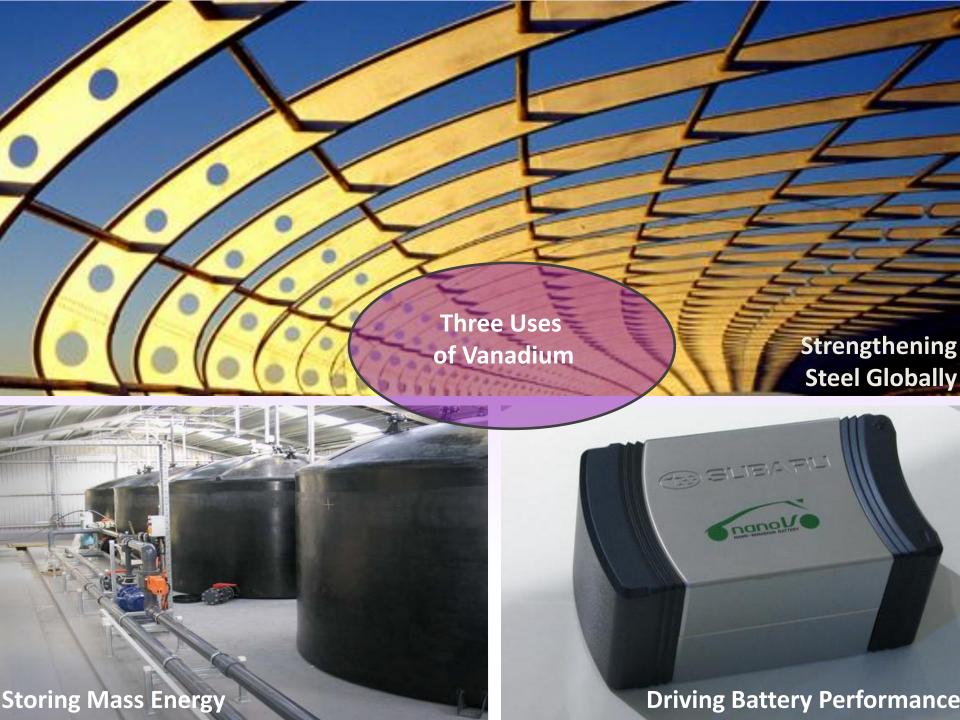
Heap leach

0.2 Strip Ratio

Mid 2011 Final Feasibility Study

* Scoping Study & NI 43-101:

AMEC 2008


\$90M Cap Ex

40% After Tax IRR

\$89,000,000 NPV

	Resource	Expansion	Grade	Mrkt Price per	Unit Cost	Production 2013
Vanadium	122 M lbs	366 M lbs	0.339%	\$7.50 lb	\$3 lb	14,000,000 lbs pa

Vanadium in Steel

Primarily used to strengthen steel

Lighter, stronger, corrosion resistant, wieldable

90% High Strength, Low Alloy Steels

- 1 lb HSLA = 1.4 lb carbon steel
- Buildings, bridges, cranes, trucks, pipelines, ships, engines

5% Alloy steels – tools, alloys, air fames, jet engines

5% Catalysts - primarily used in sulfuric acid production

Sulfuric acid required for production of rare earths

Grid Level Energy Storage

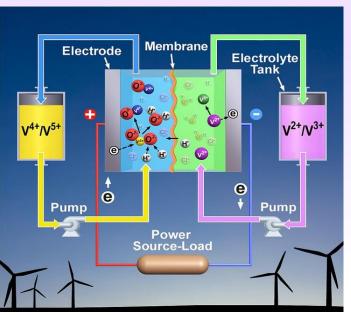
President Obama

"Vandium Redox Fuel cell"

"that's one of the coolest thing I've

ever said out loud"

Forum on small business: Closing session. Cleveland, OH, Feb 22, 2011

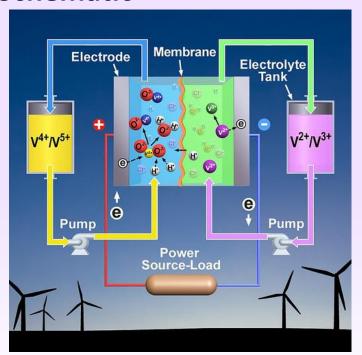


Vanadium Mass Storage Battery

Problem

- Massive storage capability required for Off-Peak usage to manage base load power balancing
- Grid Power surging with solar and wind

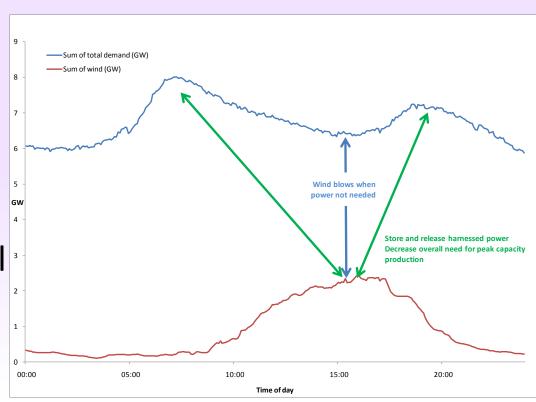
The Only Economic Solution

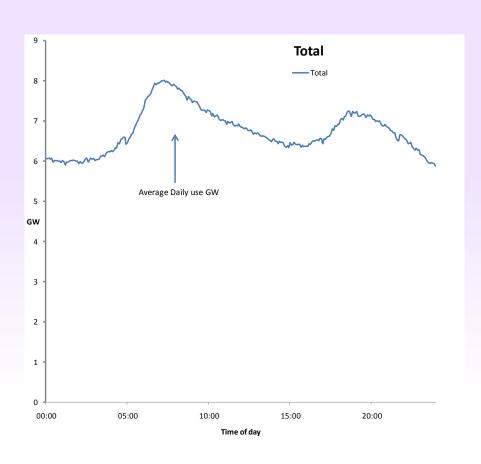

Vanadium Redox Batteries (VRB's)

- >20 year battery life. Only battery that rapidly charges and discharges with little effect on battery life
- No limit on size. Huge scalability potential
- > 10,000 cycles per battery. No chemical reaction batteries do not degrade or get "consumed" over time
- Cheapest scalable solution
- High volumes of vanadium required

Vanadium Redox Batteries

Schematic




Alternative Energy Application

- Eliminate
 intermittent supply
 issues by storing and
 releasing as needed
- Store when spot rates are low and sell when they are high

Power utility application

- Add local capacity
 - Eliminate need to increase size of power generation to only meet peak demand
 - Power generation scaled to average demand
 - Peak demand satisfied with storage
 - Reduce need to send excess power down the lines just in case it is needed. Unexpected demand drawn from storage
 - Buy cheap power based on time of day and store

Industrial Applications

- Generate their own power through alternative means and store it for when needed
- Buy power at times of day when cheap, store and use as needed

Vanadium in energy storage

- In CA, average annual electricity usage is > 270,000 GWH
- In CA average peak daily demand is about 65,000 MW
- CA AB 2514 5% of peak demand in storage by 2015
 - 3,250 MW of storage
 - 52M lbs of vanadium

Electric Vehicles (EV)

- Many technologies competing for adoption
- Significant investments in technology
- Many wide ranging projections on adoption
 - DOE predicts
 - 2015 800,000 vehicles worth \$8B to the battery business
 - 2020 6M vehicles worth \$30B to the battery business
- Lithium not limited but worries on scarcity drove significant increases in prices and stock value

Existing VRB Mass Storage Facilities

A 1.5 MW UPS system in a semiconductor fabrication plant in Japan.

Using 75 tons of V2O5 solution worth approximately \$1,000,000.

A 275 kW output balancer in use on a wind power project in the Tomari Wind Hills of Hokkaido.

Using 13.7 tons of V2O5 solution, worth approximately \$180,000

• A 200 kW, 800 kW·h (2.9 GJ) output leveler in use at the Huxley Hill Wind Farm on King Island, Tasmania.

Using 50 tons of V2O5 solution worth approximately \$660,000

A 250 kW, 2 MW·h (7.2 GJ) load leveler in use at Castle Valley, Utah.

Using 112 tons of V2O5 solution, worth approximately \$1,500,000

• Two 5-kW units installed at Safaricom GSM site in Katangi and Njabini, Winafrique Technologies, Kenya.

Using 0.50 tons of V2O5 solution worth approximately \$6000

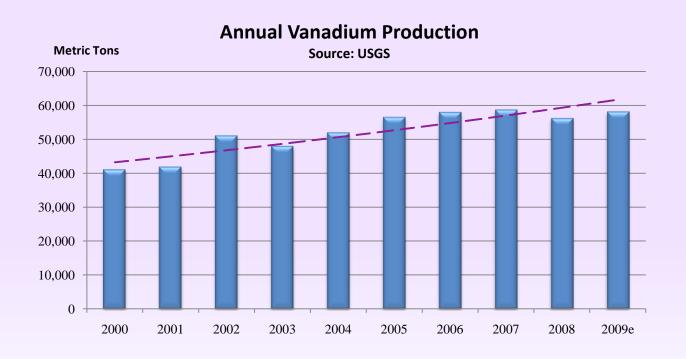
 Two 5-kW units installed in St. Petersburg, FL, under the auspices of USF's Power Center for Utility Explorations.

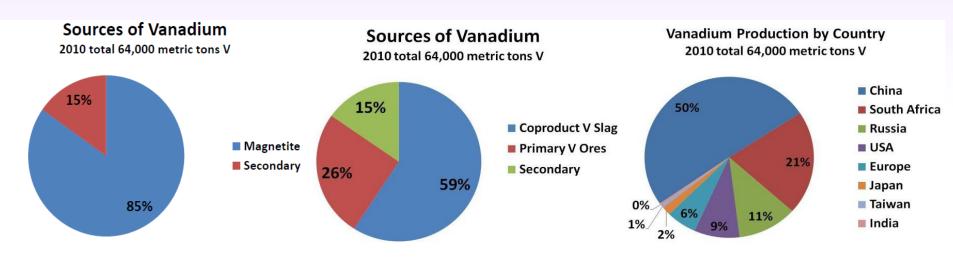
Using 0.50 tons of V2O5 solution worth approximately \$6000

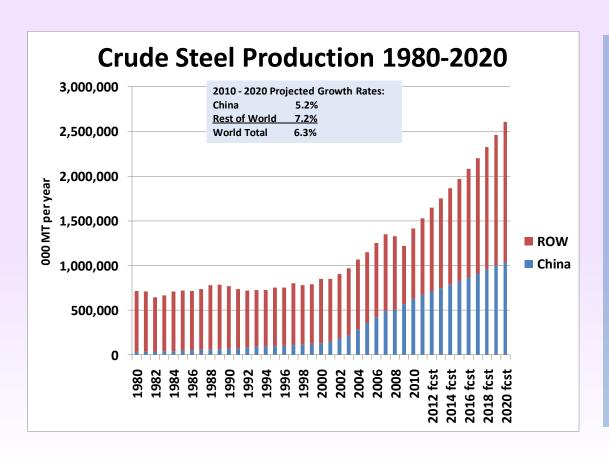
Lithium Vanadium Battery

Subaru G4E Concept

Cathode	Voltage (V)	Energy (kWh/kg)	Cost (\$, relative)
LiCoO ₂	3.7	0.518	1
LiMn ₂ O ₄	4	0.4	0.04
LiFePO ₄	3.3	0.495	0.03
Li ₂ FePO ₄ F	3.6	0.414	0.08
Li ₃ V ₂ (PO ₄) ₃	4.8	0.624	0.4
LiVPO ₄ F	4.1	0.492	0.84

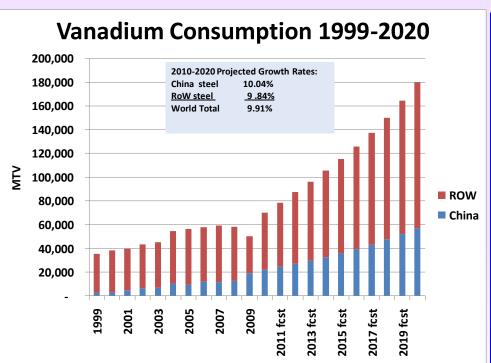

Lithium Vanadium Battery

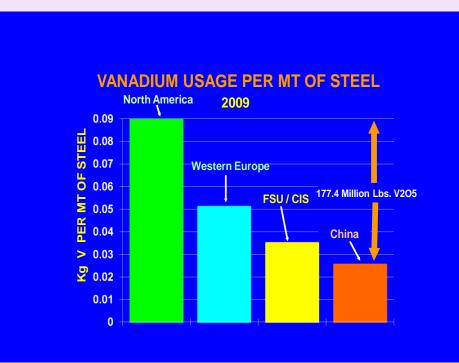

	Lithium Vanadium	Lithium Cobalt	
Life Cycles	35,000 (30-50 years)	300 (3-5 years)	
Rapid Charge and Discharge	Minutes	Hours	
Self Discharge	Low (stays charged)	Normal	
Metal Demand	High	Low	
Application Size	Larger	Smaller	
Heat Generation	Low	High	



Vanadium Supply

Steel Production MT/yr.

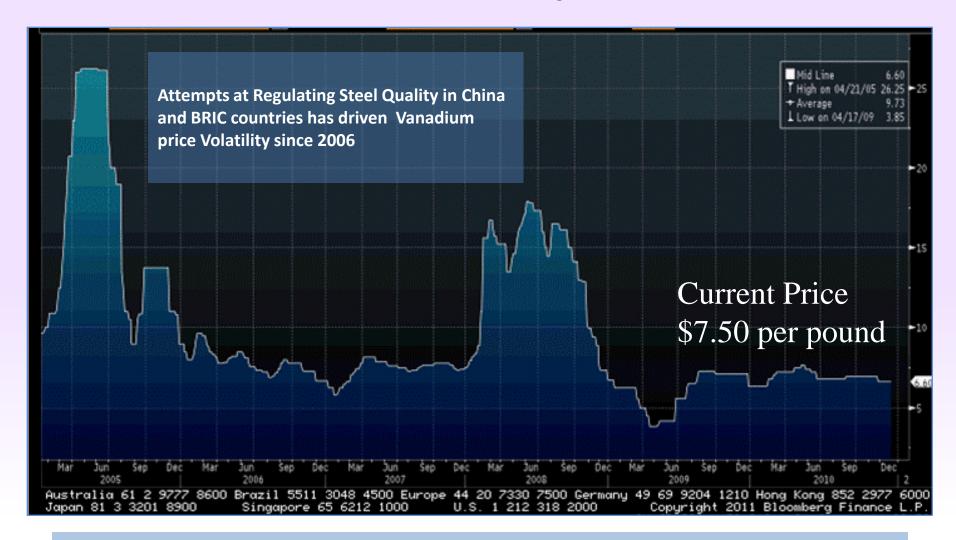



Global Steel Production 1980-2010 (MT/yr.)

BRIC countries account for more than

90% of the growth in global steel production since 1980.

Quality vs. Quantity



Global Vanadium Consumption is predicted to double by 2025.

This is due to the forecasted Specific Vanadium Consumption Rates in the BRIC countries that are expected to equalize to the rest of the world by the year 2025.

Vanadium Price Expectations

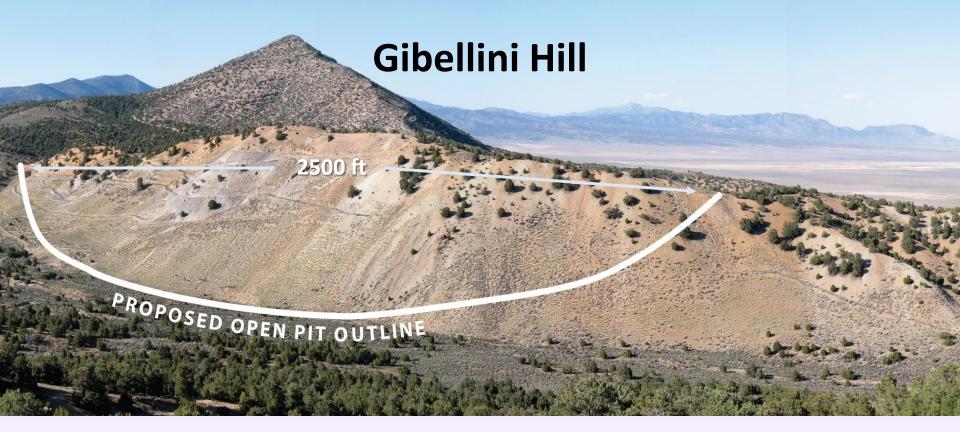
Rational Vanadium Price 2010-2015

- •Low -US\$6.00/pound V2O5 based on cash cost of production
- High –US\$13.50/pound V2O5 based on value to major end users

Gibellini Project

100% owned by American Vanadium Corp.

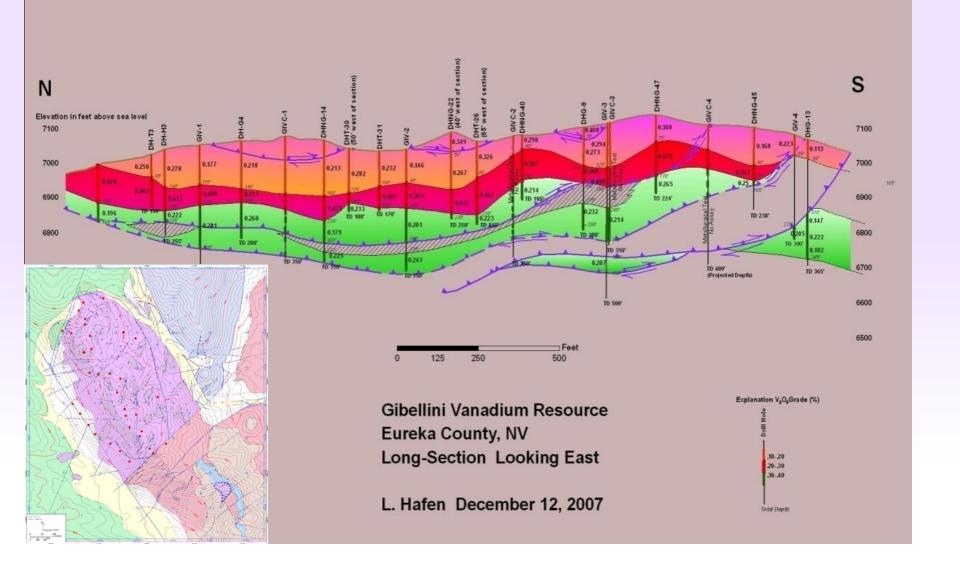
- 3,400 acres 298 unpatented claims
- \$145,000 AnnualPrepaid Royalty, 2.5%NSR

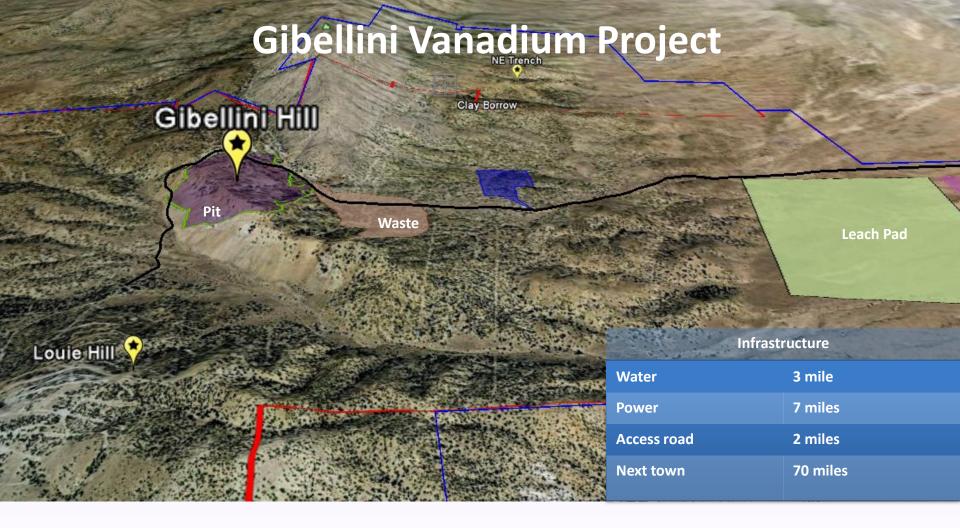

Historic exploration drilling > 160
holes by several operators
including Noranda and Union
Carbide

AMEC Scoping Study in 2008

Potentially lowest cost primary vanadium producer in the world

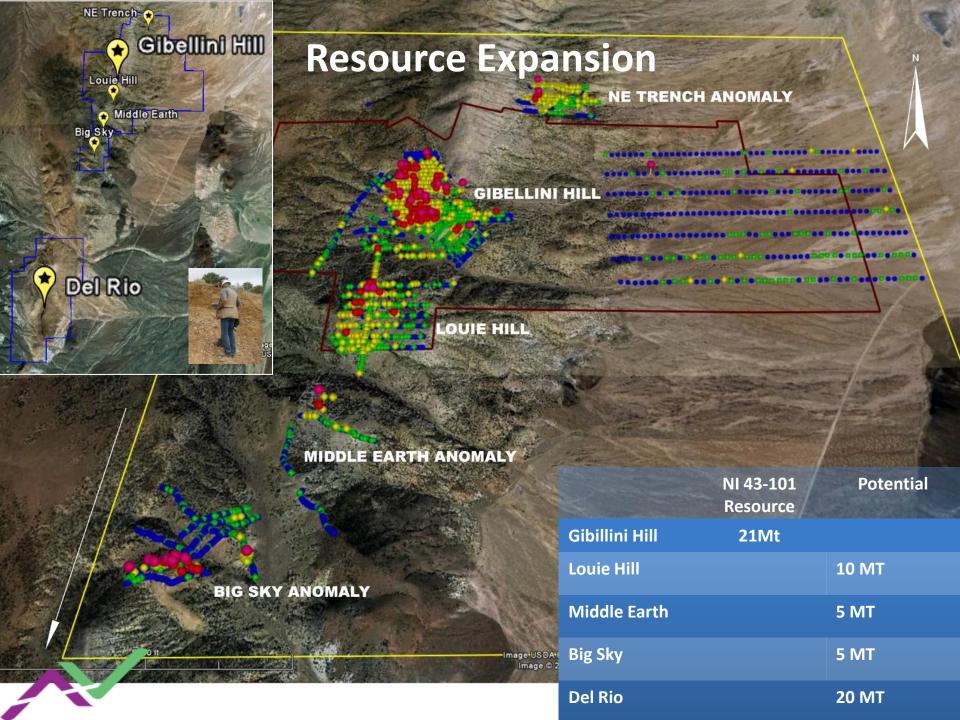
Could supply 5% of world's current demand for vanadium for 15 years.

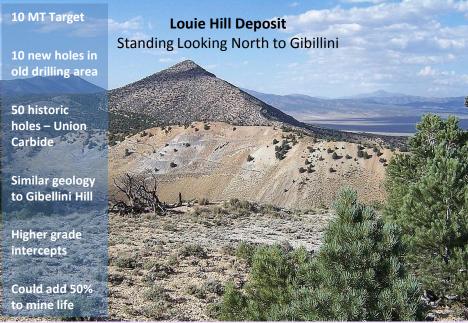


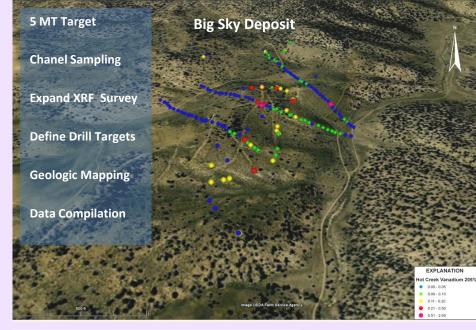


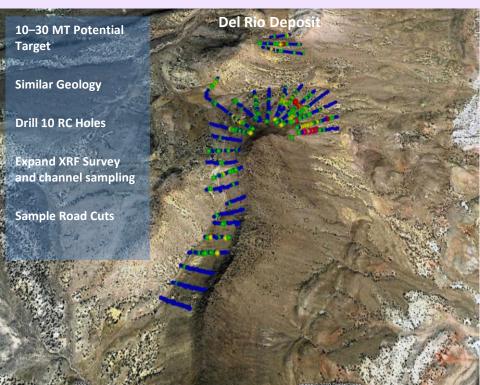
NI 43-101 Compliant Resource						
Category Tons (MM) Grade V ₂ O ₅ (%) Pounds V ₂ O ₅ Contain						
Total Indicated	18.0	0.339	122 million			
Total Inferred	2.8	0.282	16 million			

Gibellini Project


Feasibility Study AMEC underway


Metallurgical testing program underway


Environmental permitting underway:


Biological, cultural and spring/riparian field studies completed

2011-2012 Exploration Plan

\$1,000,000 Committed

Very Similar Geology

All Above Ground

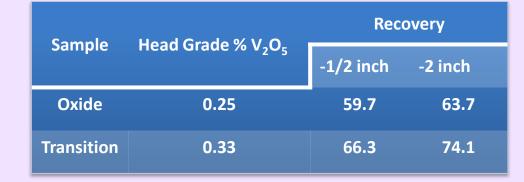
Low Cost Exploration

Fast & Cheap Drilling

Process Flow Sheet

Sulfuric Acid Heap Leach

Heap


Building

Barren

Pond

 V_2O_5

Production

Secondary
Crushing

Agglomeration

Ore Delivery

Primary Crushing

No magnetite
No grinding
No roasting

*No longer required

Two Products onsite

Ore

Curing

Preg

Pond

Solvent

Extraction

Organic Stripping

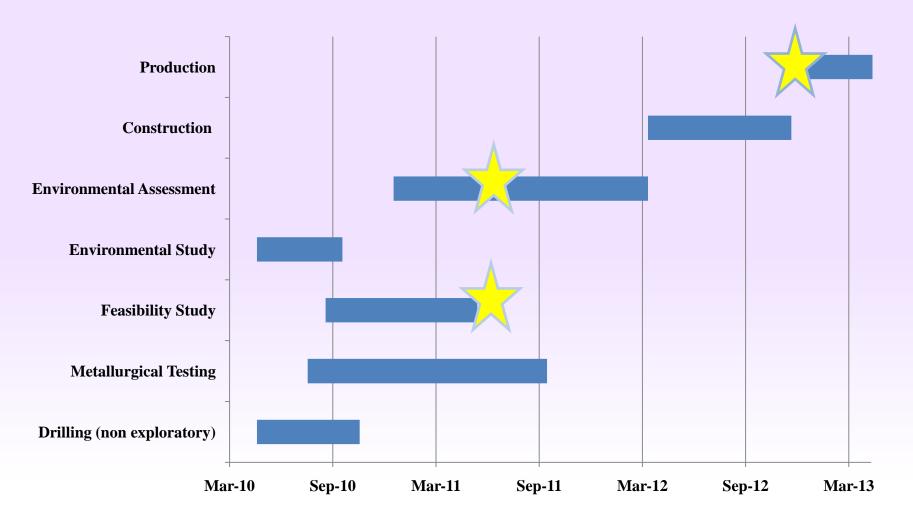
AMV

Precipitation

Vanadium Electrolyte

AMEC Scoping Study

Annual Tonnage, short tons	3,000,000
Vanadium Production, lb V2O5/yr	14,000,000
Capital Cost	\$89,000,000
Operating Cost, /ton	\$14
Operating Cost, /lb V2O5	\$3
NPV @ 5% Discount	\$89,000,000
IRR After Tax	40%


Scoping Study and 43-101 Technical Report by AMEC, Oct 2008

Opportunities to improve:

- Reduce sulfuric acid consumption
- Remove crushing stages
- Conveyor vs trucks
- Power capital/operating cost

Milestones and Target Dates

Competitive Advantages

Excellent capital structure

One of the lowest cost & easiest vanadium operations in the world

- Favorable geology
- Open pit with 0.2 strip ratio
- Heap leach with minimal, if any, crushing
- Low capital cost

Best mining jurisdiction in the world

First to production

Lowest risk

Project expansion opportunities

Strategic opportunities and exits

Peer Comparison

Company	Market Cap	Deposit	Grade	Recovery	Op Cost	Cap Ex	Annual Production	Stage	Product
Apella APA:TSX.V Quebec	\$27M	26 MT	0.48%	51% - 74%	Unknown	Unknown	Unknown	Exploration Drilling	V ₂ O ₅
Largo LGO:TSX.V Brazil	\$113M	22.5 MT M&I 13.1 MT P&P	1.26% 1.25%	71% Grinding Roasting	\$2.61 /lb	\$250M	16.5 MM lbs 2013-2014	Feasibility	FeV
Energizer EGZ:TSX.V Madagascar	\$72M	21 MT Ind. 4.2 MT Inf.	0.76% 0.66%	75% Grinding, Pre-roast Alkaline Leach	Unknown	>\$300MM	2015	NI 43-101	V ₂ O ₅
Windimurra Australia	N/A	46 MT M&I	0.46%	Unknown	Unknown	\$120M+	Unknown	Past Producer	FeV & V ₂ O ₅
American Vanadium Nevada	\$32M	18 MT Ind 3 MT Inf	0.339% 0.282%	72% Heap Leach	\$2.96 /lb	\$90M	14 MM lbs 2013	Bankable Feasibility Q2 2011	V ₂ O ₅ & Electrolyte & FeV

Key Value Drivers

Analyst Coverage & Independent Reports

Off take Agreements

Steel production

Metal traders, Producers: China, India

Battery production

Vanadium Redox

Lithium Vanadium Phosphate

Bankable Feasibility Study Mid 2011

Project Finance

Resource Expansion

THE CRITICAL ELEMENT

Alan Branham

Founding Director Helena, Montana 406.475.3614

abranham@americanvanadium.com

www.americanvanadium.com

Twitter American Vanadium Facebook American Vanadium

LinkedIn American Vanadium Youtube American Vanadium

AVC: TSX.v