Mine Waste Source Control; Successful Proof of Principle Testing

Paul Eger, Jim Gusek, Lee Josselyn

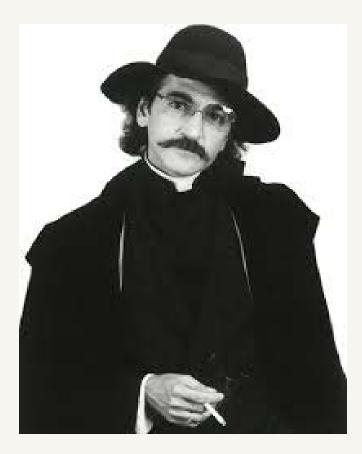
Linkan Engineering

Tom Clark

Solfatara Laboratories

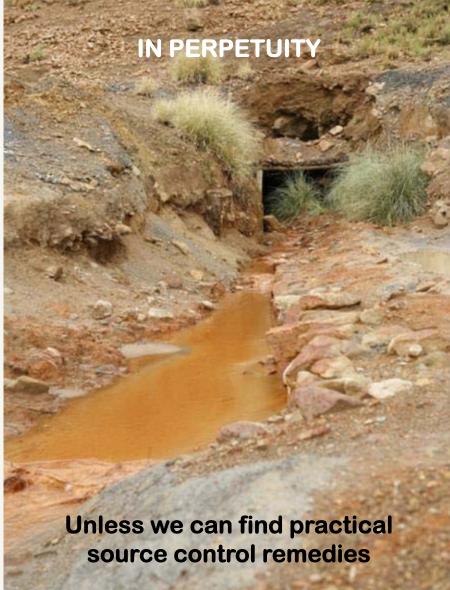
Solutions for the World of Water

Outline

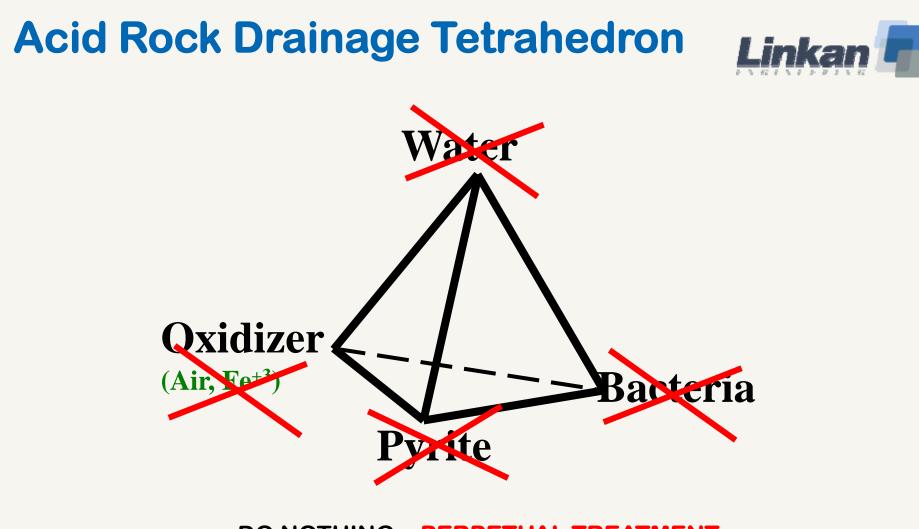


- What is source control?
- Why is it important?
- Why do we think it will work?
- Study Site
- Approach
- Results
- Conclusions
- Next steps

What is Source Control?



Guido Sarducci's 5 Minute University


Source Control 101

Why is it Important?

DO NOTHING = PERPETUAL TREATMENT

DO SOMETHING (anything) = **SUSTAINABLE REMEDIES**

Why do we think it will work?

Because it has!

Source Control – Is it too good to be true? Montana Mine Design Operations and Closure Conference May 2017

Source Control Options

- Pyrite
 Avoidance
 Processing
- Water
 - Covers Impermeable Evaporative

- Oxidizer
 - Subaqueous disposal
 - Organic covers
 - Bacteria
 - Bactericides
 - **Organic materials**

Why Bacteria?

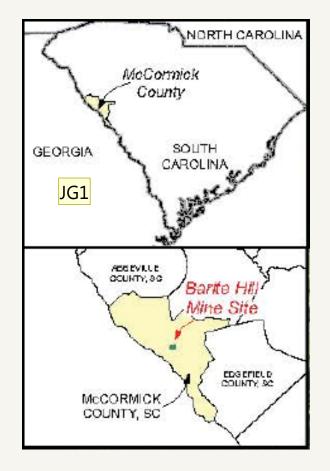
- They are everywhere!
- Shown to greatly accelerate rate of pyrite oxidation
 - Rate increases by orders of magnitude
- Been found in circumneutral mine drainage
- Major influence on the ultimate water quality

Acidithiobacillus Ferrooxidans

Changing the Microbial Community

Eliminate with bactericide

- Surfactants Sodium Lauryl Sulfate
- US Bureau of Mines 1980's
- Create conditions for other bacteria
- Change environment and replace by competition
 - Organics milk
 - Western Research Institute (2008)
 - Create biofilms



THE SITE

Barite Hill Gold Mine

- McCormick, South Carolina
- Historic mining 1850's
- Open pit mining 1991-1994
- Reclamation from 1995 to 1999
- Bankruptcy July 1999
- Emergency action 2007
- Superfund designation 2009

JG1 We need to try & find this with better resolution Jim Gusek, 5/3/2019

Inventory Results 2007

10-acre acid pit lake pH 1.5 – 2.2

No outletWater level rising

Acid seeps from Leach Pad Acid seeps from Spent Ore Landfill

Acid seeps from Waste Rock Pile

Ditches severely eroding

Remedial Action

Spillway Construction

Lake Neutralization and Carbon Addition

Stockpile reclamation

Problem

- Pit water continued to be acidic with high levels of trace metals
- Periodically retreated pit with sodium hydroxide
- Immediate pH increase but slow decline
- Continued input of acid from waste rock appears to be major source
- Need a more permanent and sustainable solution

Project Goal

Develop and test proof of principle tests to develop innovative remedial actions for the site

Project Objectives

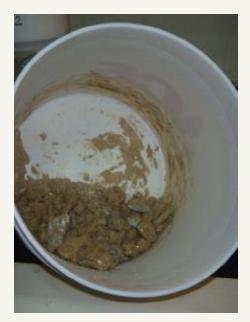
- Collect and characterize representative samples from the site
- Conduct initial screening tests to refine proof of principle testing
 - No ASTM methods existed
 - Needed to develop tests
- □ Conduct proof of principle testing
- Evaluate remedial methods for various site components
 - Waste rock stockpiles
 - Pit water
 - Groundwater
 - Pit bottom

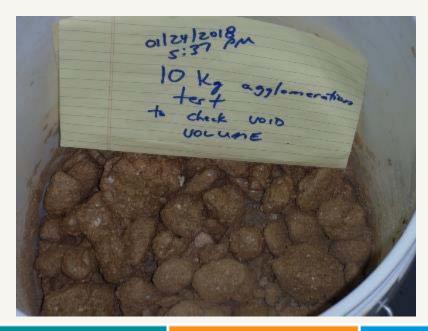
Proof of Principle

- Objective was to determine <u>only</u> if the technique could work
- Developed screening protocols to facilitate testing – eliminate dead ends early
- Based on standard testing techniques when possible
- Amendments added in excess

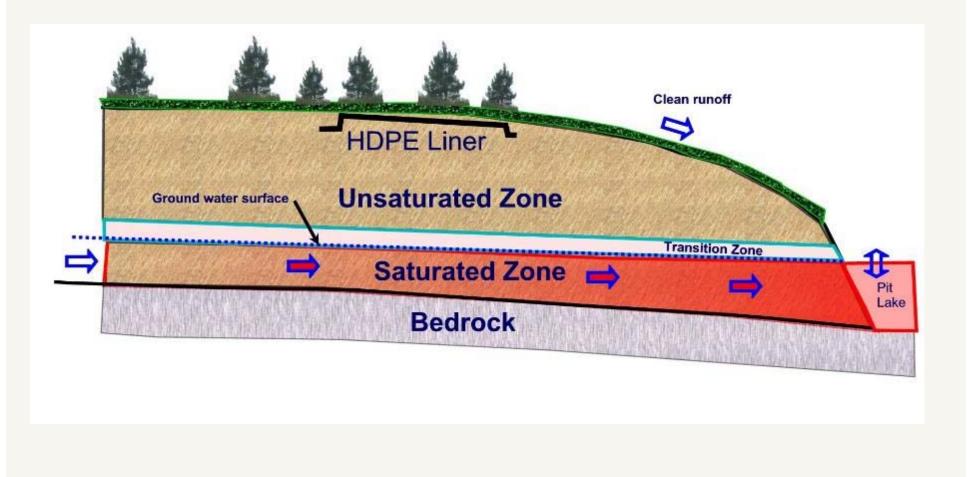
TO GO OR NOT TO GO; THAT IS THE QUESTION

Sample Collection





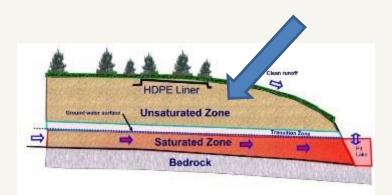
Sample Preparation


- Sample contained large percentage of fines
 - Poor flow properties
- Agglomerated sample to improve hydraulic conductivity
 - Agglomeration process only required distilled water
 - Use this sample in all reactors

Stockpile conceptual model

Approach

- Conduct screening protocols to eliminate test conditions that were doomed to fail or could be restrictive
 - > Beaker Tests (milk & surfactants)
 - Modified US Bureau of Mines (surfactants)
- Develop specific test condition to simulate each zone in the stockpile
 - Unsaturated
 - Transition
 - Saturated



Unsaturated Zone

- Portion of the stockpile permanently above water
- Aerobic environment
- Reaction products moved by water infiltration
- Contains both residual and sulfide acidity

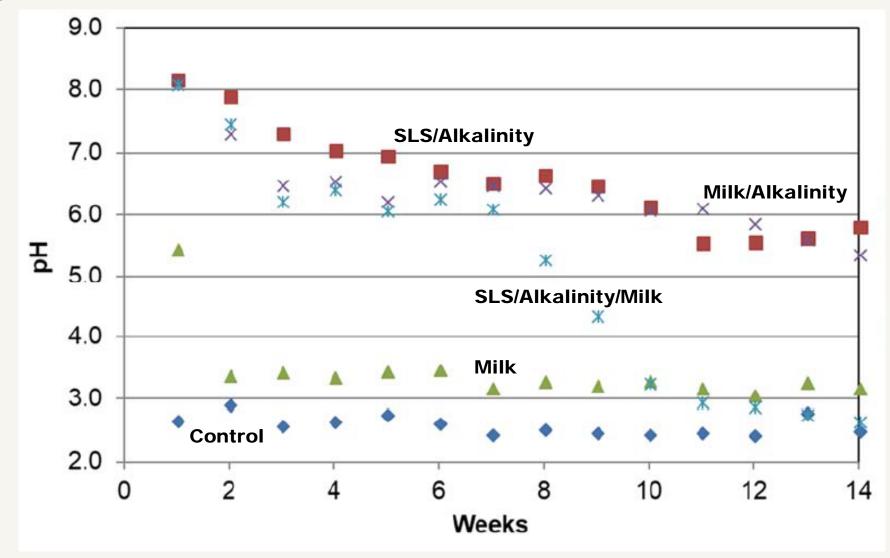
Wilfdet/ptertial#cidiy##mected#silfdetmineals#which#an#eed#in#helfiture

Unsaturated Tests- Methods

- Modified humidity cell test
 - 20 kg sample
 - One week drying cycle
 - Similar to standard humidity cells
 - Peristaltic pump flooded from bottom with distilled deionized water
 - Water pumped out

Linka

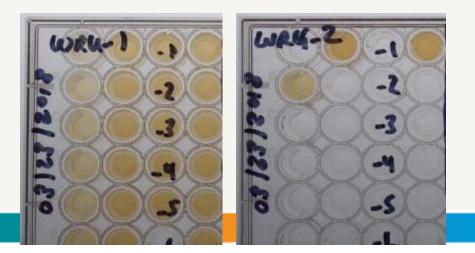
Unsaturated Tests- Treatments



- **Control**
- □ Sodium Lauryl Sulfate (SLS)/Alkalinity
- □ Sodium Lauryl Sulfate (SLS)/Alkalinity/Milk
 - □ Sequential application
- Milk
- □ Milk /Alkalinity

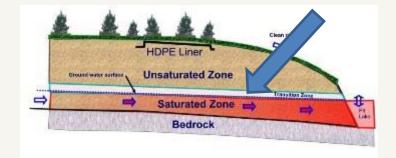
Bacterial inoculum added to milk reactors

Unsaturated Zone 20-kg Test pH Results



Unsaturated Zone 20-kg Test

Microbial Suppression Mesophilic and Acidophilic Fe-Oxidizers

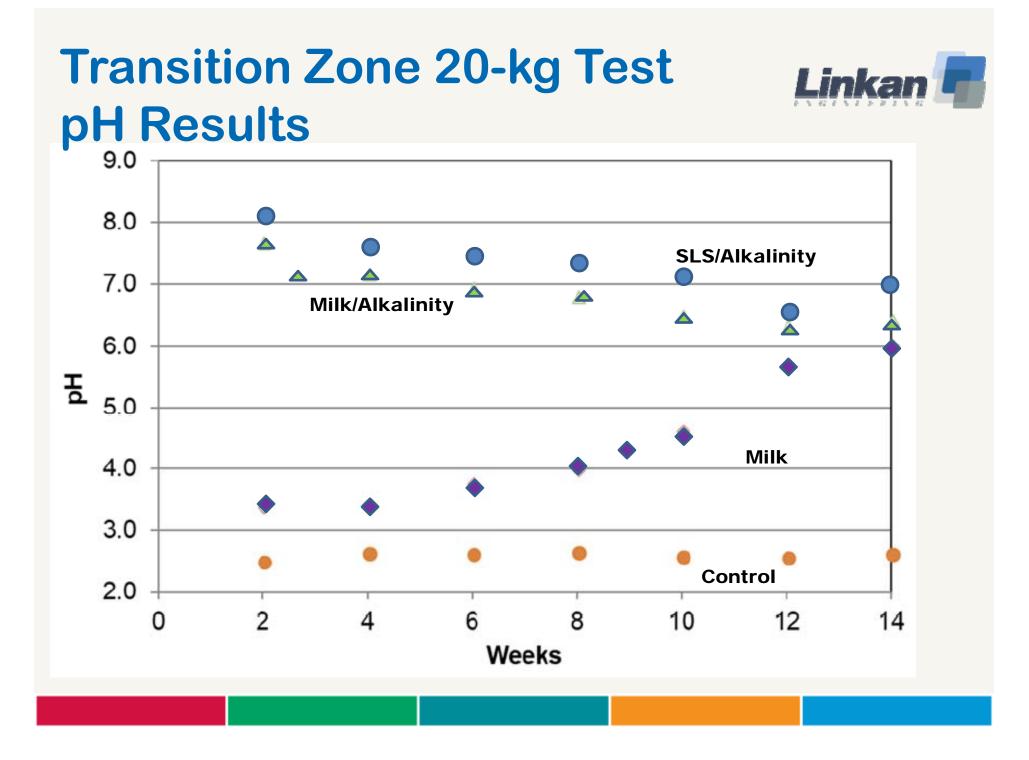


Test Group	Туре	MPN (cells / mL) ¹	
No Treatment	Aq	1.1 x 10 ⁶	1.2 x 10 ⁶
SLS + Alkalinity	Aq	9.0 x 10 ⁰	9.3 x10 ²
Milk	Aq	4.3 x 10 ⁴	9.3 x 10 ⁴
Milk + Alkalinity	Aq	9.3 x 10 ³	4.3 x 10 ⁴
Sequential: SLS + Alkalinity (prior to Milk application)	Aq	2.4 x 10 ⁵	≥ 2.4 x 10 ⁶

Transition Zone

- Portion of the stockpile between high and low water level
- Alternating wet and dry cycle
- Ideal conditions for oxidation and transport

Transition Zone Tests-Treatments


- Control
- □ Sodium Lauryl Sulfate (SLS)/Alkalinity
- Milk
- Milk /Alkalinity

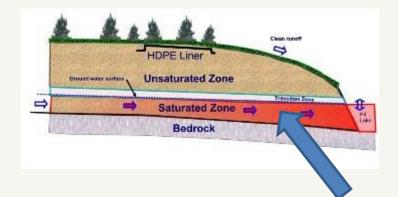
Transition Tests- Methods

- □ 20 kg sample
- Alternate one week cycles
 / flood and dry
- Reactors flooded from bottom with peristaltic pump
- Simulated natural groundwater was used as rinse
- □ Water pumped out

Transition Zone – Microbial Results Linkan

Test Group	Туре	Mesophilic and Acidophilic Fe-Oxidizers MPN (cells / mL) ¹		
		Week 3	Week 13	
No Treatment	Ag	4.6 x 10⁵	4.6 x 10 ⁶	
SLS + Alkalinity	Ag	< 3.0 x 10 ⁰	< 3.0 x 10 ⁰	
Milk	Ag	9.3 x 10 ⁴	9.3 x 10 ⁴	
Milk + Alkalinity	Ag	2.3 x 10 ²	2.3 x 10 ³	

Transition Zone – Microbial Results Linkan



Test Group	Sample	Anaerobic SO4- Reducers		
	Туре	MPN (cells / <u>mL)^{a, b}</u>		
		Week 9	Week11	
No Treatment	Ag	< 1 x 10 ⁰	< 1 x 10 ⁰	
SLS + Alkalinity	Ag	7.5 x 10 ¹	< 1 x 10 ⁰	
Milk	Ag	< 1 x 10 ⁰	< 1 x 10 ⁰	
Milk + Alkalinity	Ag	5.0 x 10⁵	1.4 x 10 ³	

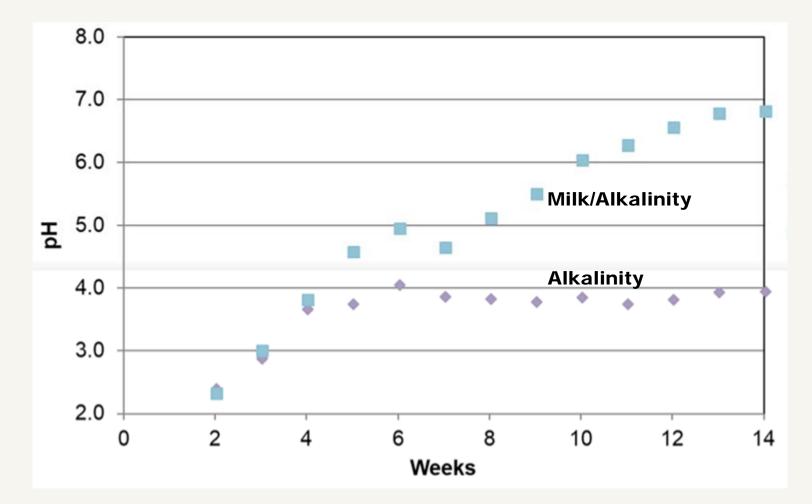
Saturated Zone

- Portion of the stockpile below low water level
- Permanently flooded
- Low pH
- High ferric iron
- Sulfide oxidation occurs due to ferric iron

Saturated Zone Tests-Treatments

- Alkalinity
- Milk /Alkalinity

Since primary oxidation is by ferric iron SLS would not be expected to be effective


Saturated Zone Tests -Methods

- 20 kg sample
- Permanently flooded
- Sample volume withdrawn weekly
- Water replaced
- Amendments added over time
 - □ Initial portion of study
 - □ Simulate groundwater flow

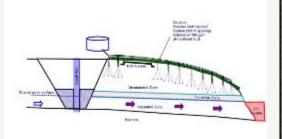
Saturated Zone-pH results

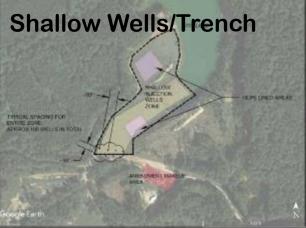
Saturated Zone-Microbial results Linkan

Test Group	Sample Type	Anaerobic SO4- Reducers MPN (cells / <u>mL)^{a, b}</u>	
		Week 9	Week 11
Alkalinity	Ag	< 1 x 10 ⁰	< 1 x 10 ⁰
Milk/Alkalinity	Ag	1.2 x 10⁵	2.7 x 10 ⁴

Source Control Works!

Conclusions




- □ Microbial community successfully modified
- SLS/ Alkalinity effective at suppressing acidophilic bacteria in the *unsaturated* and *transition* zone
- Milk/Alkalinity
 - Effective in *transition* and *saturated* zone
 - Neutralized acidity
 - Replaced acidophiles with sulfate reducers

Next Steps

Linkan 🗖

- Phase 2
 - Refine site model
 - Mass release estimates
 - **Determine optimum addition rates**
 - Application methods
 - **Drip irrigation**
 - Wells
 - Trenches
- Field Testing

Acknowledgements

- **Candice Teichert, US EPA**
- Reginald G. Dawkins,
 Black and Veatch Special Projects
- □ Joel Padgett, South Carolina, DHEC

The Choice

Q U e S t Ο n S ?

It's better to look back on life and say: "I can't believe I did that." than to look back and say: "I wish I did that."

Lessons Learned In Life

Innovation Works

