Belt-The Creek That Coal Killed Belt Water Treatment Plant

Bill Snoddy, DEQ Project Manager

Colin McCoy, P.E. Tetra Tech, Inc.

John K. Castner

TETRA TECH

CH ND TTEM-HELENA - Araconda Underground Mine, Workings, 0501

Historical Coal Mining and Coking

Coke Oven Flats Prior to 1980s Reclamation

Belt Overview

Belt Creek Looking North

Belt Creek Upstream of Mine Discharges

Water sampling indicates DEQ-7 water quality is met immediately upstream of the mine discharges

French Coulee Drain

Anaconda Mine, French Coulee, and Coke Oven Flats Drainage Flowing into Belt Creek

Belt Swimming Hole

Plan A

TETRA TECH

Plan B

1

Belt Water Treatment Plant Design Colin McCoy, P.E.

Belt Water Treatment Plant Design

<u>The Four Major Initial Design</u> <u>Considerations</u> 1.Determine Treatment Type

2.Determine Plant Location

- 3.Determine Sludge Disposal
- 4. Design Basis

Treatment Type

- Contaminants of Concern (exceeded DEQ-7):
 - Aluminum (206 mg/L)
 - Arsenic
 - Beryllium
 - Cadmium
 - Copper
 - Iron (315 mg/L)
 - Thallium
 - Zinc
 - pH = 2.8
- Going through the NCP motions, the EECA evaluated:
 - Water-Powered CaO Addition (not effective)
 - Single Stage Hydrated Lime \$
 - Two-Stage Hydrated Lime \$\$
 - Nanofiltration \$\$\$\$\$\$\$\$

Preferred Alternative: Single Stage Hydrated Lime

Two Options:

- 1. On unconsolidated coal waste below the adit
- 2. On DEQ property 250 feet above the adit

Obtained LiDAR data to cover large area

Plant Location Options

Three Options Evaluated:

- 1. Sludge Press and Landfill Disposal
- 2. Drying ponds
- 3. Injection into the Underground Mine Workings

<u>Preferred Alternative:</u> Injection into the Underground Mine Workings Mine Pool

TETRA TECH

Underground Evaluations

Step 1: Borings into mine workings (Really Stressful)
Successful at 3-4/10 boring locations
Step 2: Downhole Camera (Really Cool)
Step 3: Initial 1-week pump test
Weird Results at adit discharge – increased flow, then no effect
Step 4: 1 month 500gpm pump test (20+ million gallons)
No effect on adit flow

TETRA TECH

Montana Department of Environmental Quality

Boring Locations and Mine Pool

Mine Workings

200 GPM 1 Week Pump Test

DE Q Montana Department of Environmental Quality

500 GPM 1 Month Pump Test

Step 5: Drill near new plant location (really stressful.....again!) Hit workings 2/4 borings (Whew.....)

TETRA TECH

New Plan: Try injection near the plant into dry workings. Plan B: Longer pipeline to mine pool Plan C: Drying ponds?

Dry Underground Workings – New Injection Site

Maximum Predicteded Flow: 225 gpm

TETRA TECH

- Single treatment train with dual outdoor clarifiers
- Design Basis for collection, process equipment and storage ponds: 225 gpm
- Design Basis for Clarifiers: 165 gpm (75th percentile)
- Sludge injection 500 feet from plant

Process Design

30

Plant Footprint

- Process Area Features
- Clarifiers outside reduce building footprint
- Elevated walkways to access tanks and clarifiers
- Staging and storage
- Potential future expansion
 - Zeolite treatment
 - Oxidation
- Crane rail system for equipment maintenance
- Administrative Area Features
- Shower
- 2 restrooms
- Meeting Room
- Break Room
- Control Room

Plant Cross Section

32

<u>Currently Considering:</u>

- Caustic dosing and settling
 - pond below adit
- Pond with 2-week retention time near the plant
- Dual Clarifiers

Plant Layout

Questions?

Fun Fact

Tom Henderson, besides being an excellent human and great hydrogeologist, was the base guitarist for a 1990's grunge band from Denver, Colorado that opened for Green Day.

36