

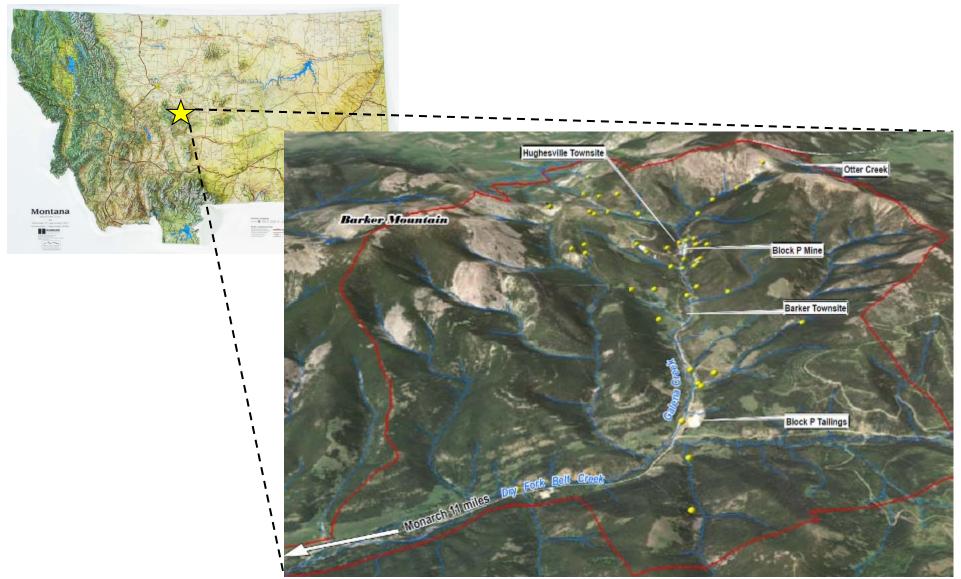
Passive Bioremediation of Adit Discharge from a Legacy Mine in Central Montana A Lab-Scale Treatability Study

May 9, 2019

- Mt. Emmons Mining Company
 - Leonard Santisteban, Sr. Research Scientist, Tucson
 - Barb Nielsen, Manager, Remediation Projects, Phoenix
 - Dan Ramey, Director, Tucson
 - Erick Weiland, Manager, Tucson
- U.S. EPA
 - Roger Hoogerheide, Remedial Project Manager, Helena

- History of the Barker Hughesville Mining District
- Collaboration between Mt. Emmons Mining Co. (MEMC) and U.S. EPA
- Passive Bioremediation Lab-Scale Treatability Study

Barker Hughesville Mining District

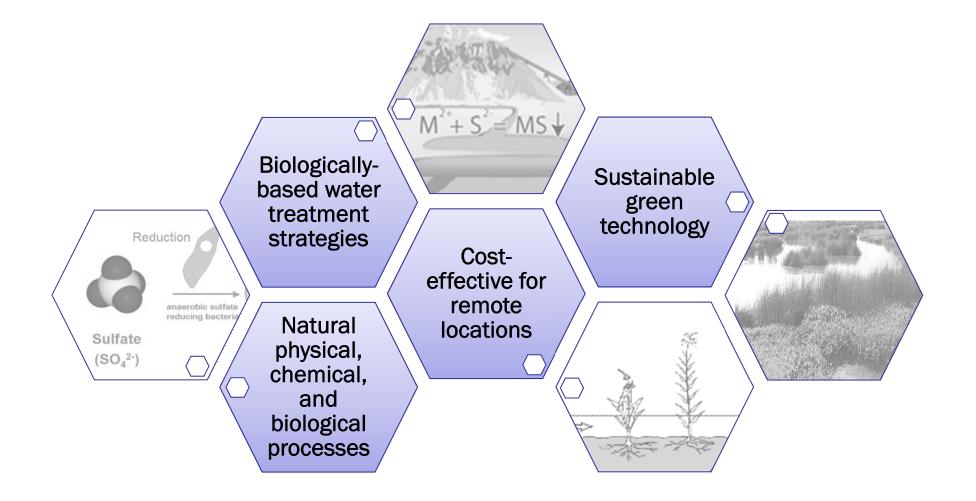


- Renowned for silver, zinc, and lead deposits
- First phase of mining (1879-1883) included silver ores at surface
 - Hampered by transport costs and fluctuating prices
- Second phase (1890s) began with the construction of a rail line from Great Falls to Neihart and the construction of smelters in Great Falls and Helena
- Final phase of mining (1920s) began with increasing metal prices and improvements in mining techniques
- Sporadic mining post-WWII

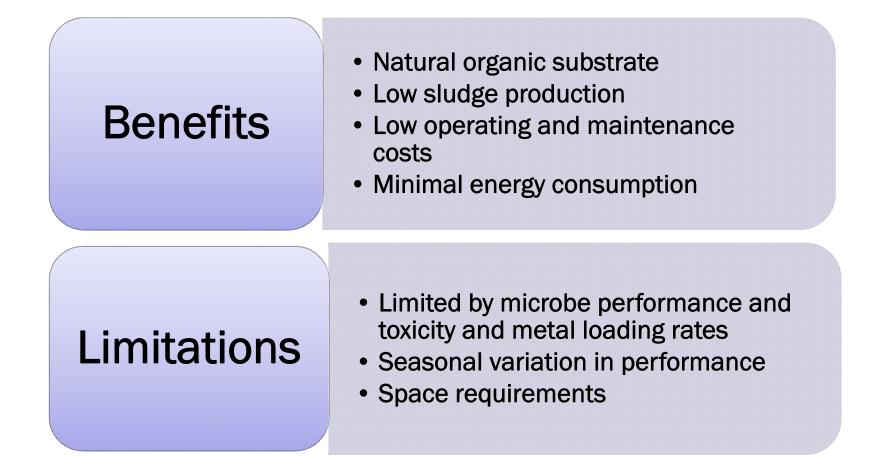
Barker Hughesville Mining District

FREEPORT- MCMORAN

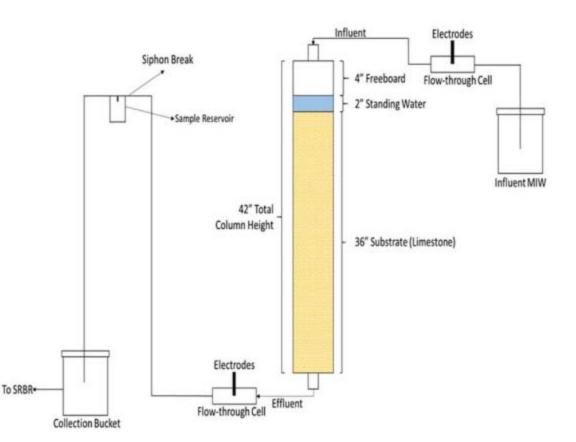
Significant Regulatory History


Entity	Year	Purpose	
	1996	Owner/Operator Reports (RTI)	
	1996	PRP Search (RTI)	
State of	1993-1995	AMRB Hazardous Waste Inventory (Pioneer)	
Montana	1991	Galena Creek Drainage Preliminary Assessment (Chen-Northern)	
	1989	Inventory of Features (DSL)	
	2001	EE/CA Removal/Relocate Block P Tailings (Barr)	
USFS	2000	Survey of Abandoned Mines on Lewis & Clark NF Property (MBMG)	
	1998	Assessment of Doe Run Properties (Barr)	
	1994	PRP Search (USFS)	
Cascade County and DNRC	1972	Acid Mine Drainage Study	

- Conditions necessary to *realistically* implement "semi-passive" biochemical reactor treatment for acidic mine water exist at the Site (pH<3, high dissolved Fe, AI, and Zn ~ 100 mg/L).
- Collaboration between MEMC and U.S. EPA began in 2016.
 - MEMC and U.S. EPA entered into an agreement to perform a Treatability Study.
- A Treatability Study Work Plan was approved by U.S. EPA in 2017 and included:
 - Field Sampling Plan (FSP)
 - Quality Assurance Project Plan (QAPP)


Passive Bioremediation Overview

Passive Bioremediation


- Goal: Evaluate the effectiveness of passive bioremediation to treat adit water and achieve identified benchmarks
- Objectives:
 - Assess the need for limestone pre-treatment
 - Evaluate performance of post-treatment wetlands
 - Provide insight into potential design of a full-scale system
- Technologies Evaluated:
 - Limestone pre-treatment
 - Sulfate-reducing biochemical reactors
 - Treatment wetlands

Limestone Pre-Treatment

Increases pH

- Aluminum and Iron precipitated as (oxy) hydroxides
- Generate aqueous alkalinity
- Reduce:
 - Aqueous Acidity
 - Dissolved Metals
 - Solids Loading

Background

Sulfate-reducing bacteria (SRB)

- Sulfate reduced and hydrogen sulfide (H₂S) released
- Free sulfide combines with metals as metal sulfides
- Increase pH of water via carbonate/bicarbonate alkalinity

Requires a carbon source

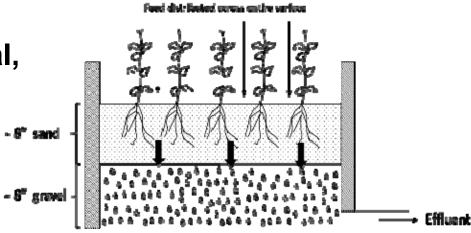
- Organic matter provides carbon and a support matrix

• Bioreactor sizing based on:

- Metal, sulfate, and oxygen loading rates
- Hydraulic retention time (HRT) target: 3-5 d

Lab-Scale SRBRs

Eight 42-in. SRBRs •4-in diameter t-fuert Fleet vadas 8-in diameter 4" Proobcord New-through Cell Signon Smek 2" Standing Weater Substrate: Influent MIW 47" Tetal Wood chips Column Hoight 56"Substate (10 or 30%) Walnut shells (30 or 50%) 1.1 Excitosios Alfalfa hay (10%) To SKOP Ethiue-t How-th ratiah C+L Limestone (30%) Coll action Suchet Sample Reservoir


• Manure (1%)

Vertical Flow Wetlands (VFW)

- Background
 - Emphasize aeration
 - COCs removed via physical, biological, and chemical processes

Sizing

- Designed for BOD and Mn removal
- Each VFW fed by 2 SRBRs
- Vegetation
 - Arctic rush (Juncus arcticus)
 - Water sedge (Carex aquatilis)

Lab-Scale Set Up

- Adit water collected and shipped to Tucson in July 2017
- Start Up in August 2017
 - SRBRs filled with water and left idle for 3 wks
 - ORP used to monitor conditions
- Operational Monitoring
 - Weekly sampling of influent and effluent at each stage
 - Physico-chemical parameters (in-house)
 - Metals, metalloids, anions (ACZ Labs)
 - Total and dissolved fractions

Influent water chemistry largely similar to adit water

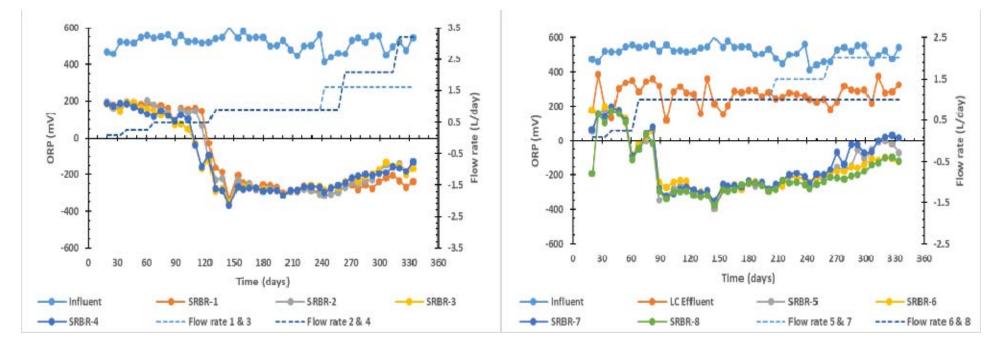
Analyte	Mean	Range	Units
рН	2.46	2.16-2.58	S.U.
ORP	519	413-601	mV
Conductivity	2,690	2,540-2,780	μS/cm
DO	7.6	5.2-9.3	mg/L
Temp.	21.3	15.5-26.5	°C

Exceptions

- pH decreased slightly relative to Adit water (2.88 s.u.)
 - Likely due to acidity stemming from Fe oxidation

- Influent water chemistry largely similar to adit water
 - The following (in µg/L) exceed identified benchmarks:

	Adit	Benchmark		Adit	Benchmark
Aluminum (D)	11,900	87	Iron	46,600	1,000
Arsenic	101	10	Lead	132	3.2
Beryllium	6.2	4	Thallium	2.0	0.24
Cadmium	226	0.3	Zinc	48,200	120
Copper	1,020	9.3			


- Fe decreased relative to Adit (111,000 µg/L)
- Anions and indicator parameters
 - Sulfate (867 mg/L) is the dominant anion
 - Acidity: 540 mg/L as CaCO₃

- pH increased
- Al and Fe removed along with As, Be, Cu, and Pb
- Alkalinity generated

Parameter	Influent	Effluent	Unit
рН	2.5	6.6	S.U.
Aluminum (D)	11,900	245	μg/L
Iron	46,600	197	μg/L
Arsenic	101	<2	μg/L
Beryllium	6.2	<3	μg/L
Copper	1,020	125	μg/L
Lead	132	<1	μg/L
Alkalinity		133	mg/L as $CaCO_3$

SRBRs Supporting Reducing Conditions

- Anoxic and anaerobic conditions maintained
 - ORP: <-100 mV and DO: <2 mg/L

POWERED BY COPPER

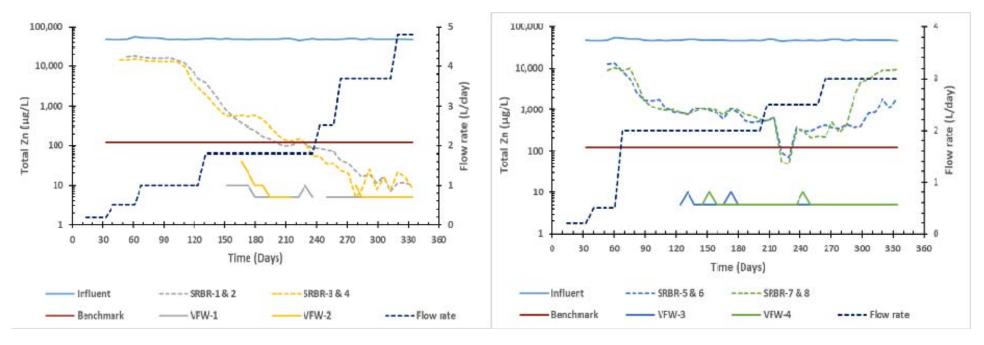
SRBRs Improved Aqueous Chemistry

• All metals (µg/L) at or below benchmarks

	w/o Pre-Treat.		w/P	w/ Pre-Treat.	
	Influent	Effluent	Influent	Effluent	
AI (D)	11,900	<87	246	<10	
As	101	<10	5.6	<10	
Ве	6.2	<0.25	1.4	<0.5	
Cd	226	<1	190	<0.5	
Cu	1,020	<10	256	<4	
Fe	46,600	50	243	<1,000	
Pb	132	<1	1.0	<1	
TI	2.0	< 0.5	<1	<1	
Zn	48,200	<100	43,700	2,150	

- Effluent circumneutral and net alkaline
- Optimal conditions maintained in SRBRs at design flow rate
 - Oxygen may have hindered SRBRs at higher flow rates
- Minimal effect from different substrates evaluated

VFWs Improved Aqueous Chemistry



- Oxic conditions restored
 - Increases in DO (7 mg/L) and ORP (+170 mV)
- VFW effluent exhibited nearly all metals below benchmarks
 - Some metals leached from substrates (e.g., Sr)
 - Mn removal 97%
- Water quality improved
 - BOD removed (<MDL)
 - Slight increase in pH (7.6 s.u.)
 - Effluent was net alkaline (110-200 mg/L as CaCO₃)
- Anions largely unchanged (Br, Cl, F, and Sulfate)

VFWs Further Treated Water

VFWs polished SRBR effluent

 Zn particulates are small enough to escape SRBR but not VFWs.

- Both 2- and 3-stage systems improved water quality
 - Treatability Study benchmarks were attained
 - Design flow rates were appropriate starting point
 - Evidence of additional capacity for treating higher flows observed
 - Limited capacity for improved sulfate removal
 - Some metals removed as carbonates (e.g., Zn)
- Potential benefits to separate pre-treatment
 - Reduced metal, acidity, and solids loading to SRBRs
 - Reduced operation and maintenance

- Multi-stage system was most effective
 - Targets specific COCs
 - Provides redundancy
- Substrates should be characterized prior to use
- Collaboration, cooperation, and communication with State and Federal Agencies was invaluable for project success

- Freeport-McMoRan
 - Environmental Technology Team
- U.S. EPA
 - Souhail Al-Abed, Office of Research and Development
- Montana Department of Environmental Quality
 - Keith Large, Project Manager
- U.S. Forest Service
 - Steve Opp, Minerals and Geology Program Manager

