Suboxic Waste Rock Management

1

Terry Biere, Environmental Engineer Gerrit Egnew, Biological Engineer Dr. Brandy Stewart, Geochemist Dr. Seth D'Imperio, Principal Microbiologist Dr. Lisa Kirk, Principal Biogeochemist

Enviromin, Inc.

Selenium Mitigation

- Dump design to reduce NO₃ and Se loading
- In situ microbial source control
 - -Integrate controls into mine design
 - -Interbed Coal Reject/tails with waste rock

William ..

-Control oxygen, moisture, lithology (carbon) to affect reduction

FEDACOV

2

SAPSM, 2010

SAPSM, 2010

5/14/2019

3

Microbial Metabolism

iromir

Selenium Biogeochemical Model

- Soluble SeO₄²⁻ is associated with O₂, NO₃⁻, & SO₄²⁻
 - Microbial community changes with \tilde{O}_2 availability
- O₂ & NO₃⁻ consuming microbes also promote Se reduction

5/14/2019

KIRK, 2015

Project Objectives

• Design a waste rock dump:

- -achieve suboxic conditions
- -sufficient residence time for denitrification and selenium reduction
- -use carbon from coal reject
- Create conditions needed to drive O₂ to suboxic levels required for nitrate and selenate reduction
 - -Material placement built bottom up, layers, compaction
 - -Support microbial community capacity to consume O₂ and reduce NO₃/Se
 - -DOC availability coal reject
- Generate oxygen, nitrate, and selenium reduction rates for use in facility design

Respirometry Testing

7

Objective:

- Characterize progressive consumption of oxygen by biotic and abiotic activity
- Create suboxic conditions needed for nitrate and selenium reduction

Parameters	Tested
ROM Waste	
3% Coal Reject	
10% Coal Reject	At 4°C,
100% Coal Reject	10°C, 25°C
CR Control	
WR Control	

8

Respirometry Results

Column Experiments

10

Conclusions

- Microbes in coal reject and waste material are capable of nitrate and selenium removal
- Oxygen concentration affects rates and extent of denitrification and selenium reduction.
- Oxygen consumption rates are much higher than previously reported, based on abiotic sulfide oxidation
- O₂, nitrate, and selenium reduction rates can be applied to pilot and full-scale dump design for full-scale testing.

Thank you.

5/14/2019

15

Questions?

16

