Recommended Methodology and Processes for Mine Water Treatment

Mine Design, Operations & Closure Conference
April 29, 2014

Mark A. Reinsel, Ph.D., P.E.
Apex Engineering, PLLC
Presentation Outline

- Steps in Selecting a Treatment Process
- Specific Contaminants
- Potential Treatment Technologies
- Mine Water Applications
- Recommendations
- Additional Resources
First Question

- **Usually Is:**
 - What Does It Cost?

- **Should Be:**
 - What Are the Objectives?
Steps in Selecting a Process

- Explore/confirm design criteria
- Review potential treatment technologies
- Develop process flow diagram
- Develop budgetary capital and operating costs
- Perform bench and/or pilot tests
Design Criteria

1. Flow
 - Maximum (design capacity)
 - Average (for determining operating costs)
2. Influent concentrations
 - Are they already known?
 - How well can they be estimated/modelled?
3. Effluent concentrations
 - Are permit limits already established?
 - If not, can they be estimated?
Keys

- Collect as much information as possible
- Good communication between client and water treatment consultant, and between consultants
Typical Contaminants of Concern in Mining Waters

- Suspended metals
- Dissolved metals
- Nitrate
- Ammonia
- Arsenic
- Sulfate
Potential Treatment Technologies

- Physical
- Chemical
- Biological
Physical Treatment Technologies

- Clarification
- Filtration
- Membranes
Clarifier at Kensington Mine
Clarifier centerwell at Central Treatment Plant (Kellogg, ID)
Clarifier overflow at Central Treatment Plant
Filtration

- Bag filters
- Cartridge filters
- Sand filters
- Multimedia filters
Typical Multimedia Filter

No. 1 Anthracite Coal
Silica Sand
Fine Garnet
Support Gravel
1000-gpm multimedia system at Lucky Friday Mine (Mullan, ID)
Membrane Processes

- Microfiltration (MF)
- Ultrafiltration (UF)
- Nanofiltration (NF)
- Reverse osmosis (RO)
500-gpm UF system at Montanore Mine (Libby, MT)
RO Disadvantages

- Produces high-volume, continuous waste stream
- Can be energy-intensive
- Removal of monovalent ions such as nitrate may be limited
- Will not remove dissolved gases (e.g., ammonia)
Chemical Treatment Technologies

- Hydroxide precipitation
- Sulfide precipitation
- Oxidation/reduction
- Ion exchange
- Natural zeolites
Hydroxide Precipitation

- Typically use lime to increase pH
- Can be hydrated lime or pebble lime (slaker)
- Can also use caustic soda (liquid), soda ash or magnesium hydroxide
- pH target depends upon contaminants of concern
- Co-precipitation can increase removal
Central Treatment Plant in Kellogg, Idaho
Aeration Basin at Central Treatment Plant
Sulfide Precipitation

- Typically used as “polishing” step for low metals concentrations
- Will achieve lower levels than hydroxide ppt.
- Can use sodium sulfide or hydrosulfide (NaHS)
- Need little reagent and low retention time
- Perform at neutral-to-alkaline pH to avoid H₂S
Oxidation/Reduction

- May be required to transform contaminants into less-soluble form
- Arsenic: Add oxidizing agents such as chlorine, hydrogen peroxide, ozone, permanganate
- Chromium, selenium: Add reducing agents such as sodium bisulfite or metabisulfite
- Reaction is quite rapid
- Will add TDS
Ion Exchange (IX)

- Specific resins available for dissolved metals, arsenic, nitrate
- Sodium or chloride are exchanged for contaminants removed
- Several resin manufacturers available
- Resin is expensive but can be regenerated (on-site or off-site)
- Waste stream is typically much less than RO
IX vessels at Buckhorn Mountain
Natural Zeolites

- Can be used for ammonia removal
- Also have a high selectivity for thallium
- Much less expensive than IX resin
- Regenerate with salt
Biological Treatment

- Can be used for the following contaminants:
 - Organics
 - Ammonia
 - Nitrate
 - Selenium
 - Sulfate
Biological Treatment Technologies

- Attached growth systems
- Suspended growth systems
- Membrane bioreactors
Attached Growth Systems

- Bacteria are attached to a surface or media
- Biofilm provides a very robust process
- Very resilient to changes in flow, pH, concentrations, etc.
- Best choice for high concentrations
Biological treatment system at Key Mine (Republic, WA)
Nitrate levels at the Key bio-treatment system

Date

mg/l

NO3- in
NO3- out
Sulfate levels at the Key bio-treatment system

SO4 in

SO4 out
Biological nitrate removal system at Stillwater Mine (Nye, MT)
Bench/Pilot Testing

- Will determine whether selected technology can meet discharge limits
- Can provide valuable information for full-scale capital and operating costs
- May be required by agencies
- Bench testing is simpler, shorter and less expensive than pilot testing
- Jar tests or column tests?
Possible Jar Tests

- Chemical precipitation
- Oxidation
- Coagulation/flocculation
- IX/zeolites
Possible Column Tests

- Leach testing for nitrate/ammonia
- IX
- Biological
Recommendations

- Organics
 - Biological treatment or activated carbon
- Dissolved metals
 - Hydroxide ppt. or sulfide ppt. or IX
- Nitrate
 - Denitrification (attached growth) in almost all cases
- Ammonia
 - Nitrification or zeolites or breakpoint chlorination
- Arsenic
 - Iron coagulation/filtration or adsorptive media or IX
- Sulfate
 - Biological (attached growth) or chemical ppt. or NF
Additional Resources

- **Reference Guide to Treatment Technologies for Mining-Influenced Water**
 - EPA, March 2014
 - Passive and active treatment
 - Cost table at end of document

- **Mining Waste Treatment Selection technology**
 - More on active treatment
 - www.itrcweb.org/miningwaste-guidance/technology_overviews.htm

- **NAP Global Acid Rock Drainage (GARD) Guide**
Questions?

Mark Reinsel
mark@apexengineering.us
(406) 459-2776

Apex Engineering, PLLC