Microseismic Monitoring at the Troy Mine

Bryan Farbridge
April 2014
Introduction

- Background
- December 2012 events
- MBMG – Regional seismic monitoring
- NIOSH instrumentation
- ESG geophones
- System expansion
• What is a seismic event?
 – Sudden release of energy within the earth’s crust which creates seismic waves, i.e. earthquakes

• What is a microseismic event?
 – Very small scale seismic event commonly heard by miners working underground
• Rock noise has long been seen as a warning of changing or unstable ground conditions.

• Researched by the US Bureau of Mines beginning in the 1930’s.
• Range of applications including mining, oil & gas, and exploration

• Underground applications:
 – Geotechnical analysis
 – Seismic hazard
 – Rock burst monitoring
 – Peak particle velocity / acceleration
 – Block cave mapping
• Increased rock noise reported by miners
• Suspend operations, begin monitoring audible noise from safe locations
• Events recorded by MBMG
Regional Seismic Monitoring

- Maintained by the Montana Bureau of Mines & Geology
- Confirm on-site observations
- Detect large events
- Limited number of stations in Northwest Montana
• Increased seismic activity prevented personnel from going underground
• The decision was made to install a microseismic monitoring system
Dr. Pete Swanson installed two seismographs on Dec 21, 2012.

- Decreasing trend over the following weeks
- Quantitative measurement of microseismic activity levels within the mine
- Initial estimate of effected areas and seismic velocity

Photo by Dr. Pete Swanson
Recorded Seismic Events per Hour

Date & Time (MST)

Number of Events Per Hour
• Data Acquisition
 – Sensors
 – Paladin
 – Telemetry
 – HNAS
• Determine area of interest
• Work with ESG to optimize array design
 – Sensor spacing
 – Try to surround area of interest with a 3D array of sensors
 • Limited by location of mine workings
 – Determine route from geophones to surface
Geophone Installation

- Finding a safe location for sensors
- 120V power required at each paladin
- Set-up
 - ESG field technician available to provide training and assist with installation
 - Determine triggering parameters
• Event Triggering
 – What constitutes an “event”
• Trigger Parameters
 – Amplitude threshold triggering
 – Number of sensors
 – STA/LTA triggering
• Defines the event
 – When
 – Where
 – Magnitude

• Dependent on seismic velocity
 – Requires initial calibration blasts

• Automatic vs Manual
• Events are automatically processed in real time

• Software determines P-wave arrival times based on STA/LTA algorithm
 – Typically less accurate than manual processing
 – Does not pick S-wave arrivals
• Various event types
 – Fracture style events
 – Rock fall
 – Blasts
 – “Noise”
• Remove noise events caused by mining
• Go through each event individually to determine locations
• Process blasts
Manual Processing
• ESG SeisVis Software
 – Uses colors / shapes / sizes to differentiate magnitude and event type
• Allows visual comparison of event locations with the mine workings
• Daily monitoring by engineering, mine, and safety departments
• Training personnel to differentiate between equipment noise and (micro)seismic events
• Remote desktop allows users to log in from anywhere with an internet connection
• All events are tracked in a spreadsheet
• Daily event processing
• Event frequency graphs generated regularly
• Determining background seismicity
 – What is “normal”
 – Audible noise vs measured seismicity
 – Work with geotechnical consultants to determine working and monitoring protocols
• Additional uses
 – Monitor cycle times
 – Improve practices / procedures

• System expansion
 – Modular design
System Expansion
• Improved regional seismic network
 – Worked with the MBMG to install a regional seismograph near the Troy Mine tailings facility
 – NIOSH researchers working to install a permanent station above the mine workings
 • Difficult terrain
 • Logistical issues
 • Data transmission (telemetry)
Acknowledgements

• Dr. Pete Swanson, NIOSH / OMSHR
• Mike Stickney, MBMG Earthquake Studies Office
• ESG Solutions Training Documents
• Troy Mine seismic data