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Abstract: This paper provides a review of the progress in regard to the InSAR remote 

sensing technique and its applications in earth and environmental sciences, especially in 

the past decade. Basic principles, factors, limits, InSAR sensors, available software 

packages for the generation of InSAR interferograms were summarized to support future 

applications. Emphasis was placed on the applications of InSAR in seismology, 

volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry 

sciences. It ends with a discussion of future research directions.  
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1. InSAR Overview of InSAR  

 

1.1. Introduction 

 

Interferometric synthetic aperture radar (InSAR) is a rapidly evolving remote sensing technology 

that directly measures the phase change between two phase measurements of the same ground pixel of 
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the Earth’s surface. Two coherent synthetic aperture radar (SAR) phase images of the same portion of 

the Earth’s surface are required to form a phase difference image that is called an interferogram, in 

which a fringe pattern might appear. The two coherent SAR images used to form an interferogram can 

be acquired either from two antennas on the same space platform and separated perpendicularly to the 

flight direction (azimuth direction), a technique called single pass SAR interferometry (also called 

simultaneous interferometry), or from different passes of the same SAR antenna at different times, 

known as repeat-pass interferometry [1]. Any factor that can affect the phase of the backscattered radar 

signal can affect the fringe pattern and the number of fringes in the interferogram, and thus can 

potentially be measured by the InSAR technology. These measurements include surface displacements, 

land topography, land changes, land subsidence/uplift, water levels, soil moisture, snow accumulation, 

stem volume of forest, etc. Therefore, InSAR has found very broad applications in the field of earth 

and environmental sciences. Previous review articles on InSAR technology and its applications include 

[1-11]. These review articles summarized the technical development and applications results before 

2001. The present review summarizes the most recent developments of InSAR remote sensing 

technology and its broad applications in earth and environmental systems, especially in the past decade. 

In the following discussion, we first review the fundamentals of InSAR briefly and then focus on 

InSAR applications in seismology, volcanology, land subsidence/lift, landslide, glaciology, hydrology, 

and forestry, respectively.  

 

1.2. Phase Change–Basic Measurement of InSAR 

 

Radio detection and ranging (radar) is basically a tool for measuring the returned signal from the 

target and the distance between the target and the radar emitter (antenna). In contrast to real aperture 

radar systems, SAR makes use of the Doppler effect of the motion of platforms (satellite or aircraft) to 

increase the “aperture” and thus the resolution of the images. For imaging SAR, an electromagnetic 

(EM) wave pulse is emitted repeatedly in the cross-track direction (direction perpendicular to the 

moving direction of the antenna; Figure 1). The wave travels through atmosphere which contains 

electrically charged particles, aerosol and clouds, etc.; interacts with ground surface, and then part of 

the signal is scattered back to the receiving antenna. 

To form an image from the echoes (returned signals) received from each emitted pulse, in the 

along-track direction (also called azimuth direction), the echoes are sorted by their round trip travel 

time, resulting in slant range resolution. At the same time, an airplane or satellite with the radar 

antenna moves forward and radar pulse is repeated. In SAR, the antenna must be designed to make 

azimuthal resolution as small as half the antenna length. This can be done if the antenna does not travel 

more than half of the along-track antenna length between the two successive pulses. It is also called 

the along-track resolution. The cross-track resolution and the along-track resolution determine the size 

of a ground pixel. Distance from the antenna to the ground is recorded in a rough form of slant range 

with additional information in the form of phase in the SAR image.  
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Figure 1. A geometric model for a SAR system. Slant range is the length between the 

antenna and ground pixel and ground range is the distance between the ground track and 

the ground pixel. 

 
 

The general expression for the electric field of a plane electromagnetic wave, which is a solution of 

the Maxwell equations, is: 

     , ,i t it e t e   k R
0 0E E R E R  (1)

where  tR,0E  is the amplitude of the EM pulse and the phase angle is: 

φ = k·R – ωt (2)

where ˆkk e  is the complex wave vector ( ê  is a unit vector in the propagation direction), k is the 

complex wave number, depending on dielectric constant. The wave propagates along space vector R 

(slant range).  is the wave angular frequency and t the time. Thus, the echo received by the antenna of 

an imaging radar from a ground pixel is characterized by two quantities: amplitude and phase, as 

shown in Figure 2.  

The digitized signal from a ground pixel is conveniently represented as a complex number, thus 

giving a complex image. Complex images are generated from the signal data received by each antenna. 

The amplitude of an image pixel represents the backscattering capability of the terrain of the 

corresponding ground pixel to send the incident energy back to the antenna. The pictorial 

representation of the amplitude of the EM pulses received by the antenna is called amplitude image. 

Backscattering and reflection are two different concepts. A very reflective calm water surface is very 

reflective but the least backscattering, so in a radar image, calm water surfaces correspond to the dark 

pixels. 
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Figure 2. The relationship among amplitude, phase, and wavelength of a radar signal. The 

intensity of the radar signal is proportional to the squared amplitude. 

 
 

The phase records the history of the signal from its emission to its return. The pictorial 

representation of the phase of the EM pulse is called phase image. In practice, however, an 

interferometric system does not measure the total pixel phase. Rather, it measures only the phase that 

remains after subtracting all full intervals present (module-2π). The phase image is thus called 

wrapped. Conversion from wrapped phase to continuous true phase is called phase unwrapping.  

 

1.3. Factors That Impact the Phase of an Image Pixel 

 

An image pixel is a pixel in a radar image, while a ground pixel is the corresponding surface area on 

the ground. Usually the dimension of a ground pixel is much larger than the wavelength of the radar. 

Based on the ratio of ground pixel dimension to the wavelength, the phase of an image pixel is 

generally the statistical sum of the phases of hundreds of elementary targets of the size of wavelength 

within the ground pixel. If the surface is uniform and homogeneous, these targets can be the same; 

otherwise are different. Interaction between the radar signal and the ground surface targets is a 

complicated process, involving scattering and absorption, depending on the dielectric constant and the 

target size. In equation (2), the complex wave vector is dependent on the dielectric constant, the slant 

range (distance between the antenna and the ground pixel). Thus, targets within the ground pixel of 

different dielectric constant will contribute differently to the phase of the image pixel [12]. Soil 

moisture and atmosphere will affect the dielectric constant and subsequently the wave number k during 

the wave propagation. The phase due to each target can rotate upon being scattered (depolarization) or 

be increased or decreased depending on the relative position of the target within the pixel [R in 

equation(2)].  

 

1.4. InSAR and Interferogram 

 

InSAR is a remote sensing technique using two or more SAR phase images acquired at different 

times to generate maps to detect and map changes of spatial and/or dielectric properties of the ground 
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surface by using differences in the phase of the waves returning to the satellite or aircraft [1,3,4,6,13]. 

When a series of SAR phase images is available over a specific area, combining them into a series of 

differential interferograms allows us to follow displacement trends through time, resulting in multi-

temporal InSAR. An InSAR interferogram is an image formed by the difference of two coregistered 

SAR phase images of the same area. A fringe is a line of equal phase in the interferogram. The number 

of fringes in an interferogram is counted from a reference point where the surface deformation 

(displacement) is supposedly zero. To count fringes in the regions where the fringes are extremely fine, 

the interferogram needs to be regenerated at higher spatial resolution by means of reducing the look 

number or using two images of shorter time interval. As discussed above, range can affect phase. Thus, 

an interferogram can be used to extract information such as landscape topography and its deformation 

patterns since the range changes affect the phase difference between two co-registered radar phase 

images. 

The time interval between the two image acquisitions can vary from 0.1 s to years, depending on 

how fast the target is changing. The two phase images from which an interferogram is formed can be 

acquired either at a very short time interval (~0.1 s) using single-pass interferometry or at two distinct 

times (up to years) using repeat-pass interferometry. The former case can be used for rapidly changing 

surfaces, and the later for slowly changing surfaces.  

For the repeat-pass interferometry case, the two phase images must be properly coregistered. The 

requirement for the two coregistered images to form a meaningful interferograms is stringent, which 

means that the two SAR phase images for the same area must be precisely aligned (as accurate as 0.1 

pixel) so that pixels in one phase image correspond exactly to the pixels in the other in geographic 

location. This is understandable because the phase difference between two different ground pixels does 

not make any sense.  

The stability of the ground pixel, local slope of the terrain, the direction of observation, orbital 

configuration, frequency used for the two images, image processing procedure, topography difference 

observed from two slightly different points of view by the radar, all affect the formation of an 

interferogram. Thus, for two images to be used for an interferogram, the ground pixel should be stable, 

terrain slope should be small, and the observation direction, orbit configuration, and processing 

procedure should be exactly the same. For the stringent requirement for forming an interferogram, see 

[1].  

 

1.5. Range Change Detection from Interferogram 

 

If there is just a ground displacement of the whole pixel as a part of the image (without distortion of 

the pixel) along range direction - the line of sight (LOS) between the radar and the target, the 

displacement translates directly as a phase shift with respect to the rest of the image. Moving along 

range direction by half a wavelength for the pixel and thus a wavelength of round trip distance for the 

radar signal creates one fringe (2 phase difference). Therefore, one fringe in an interferogram 

corresponds to the displacement of half the wavelength in the ground displacement in the range 

direction. This is the principle how ground surface “deformation” is measured using InSAR [12].  

As an interferogram is the phase difference image between two registered phase images, any factor 

that impacts the phase of a SAR signal will affect the interferogram. For instance, as the radar signal 
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passes atmosphere, difference in the atmospheric status (atmospheric water vapor, clouds, etc.) 

between the two image acquisitions translates to different apparent path lengths. The effects due to the 

atmosphere are thus not canceled in differentiating the two phase images. Both ionospheric and 

tropospheric heterogeneities affect the interferometric phase.  

For repeat-pass InSAR, the different acquisition geometry will result in different phase difference 

and thus affect the interferogram. For images acquired at different times on different orbits, the spatial 

separation of the two antenna positions is called the baseline. The orbital contribution to the phase 

difference is called “orbital fringes”. The ground surface topography also affects the interferogram. 

The topographic contribution to the phase difference is called “topographic fringes”.  

Therefore, many factors - the distance between the antenna and ground pixel, surface topography, 

satellite orbits, the dielectric properties of the ground surface, atmosphere, and system noise [14], all 

affect the interferogram. For repeat-pass interferometry, the two registered images used to form the 

interferogram are taken from the satellite between subsequent passes with baseline B. The first image 

(reference image) is called master image, the second image is called slave image. The interferometric 

phase (phase difference between the two registered phase images) takes the form: 

0 / /

4 4 4
2

sin atm dielectric pn

HB
D B n

R

      
   

             (3)

where 0D  is the line-of-sight (LOS) displacement (surface displacement in the direction between the 

satellite and ground pixel),  is the wavelength of the SAR system, B  and / /B  are the vertical and 

parallel components of the baseline orbit separation of the SAR image pair, respectively. H is the 

height of a pixel above a reference surface, R the slant range between the ground pixel and the antenna 

of the master image.  is the local incidence angle, the angle between the radar beam and a line 

perpendicular to the surface at the point of incidence.  

In equation (3), the first term represents the component of the interferometric phase due to the LOS 

range difference. As the two-component (amplitude and phase) SAR images are acquired from repeat 

observations over a certain time interval, this range difference can be due to the deformation of the 

surface during the time interval. Therefore, surface displacement can be measured from an 

interferogram if other terms in equation (3) can be determined.  

The second term in equation (3) is the topographic effect. To calculate the topographic effect, an 

accurate digital elevation model (DEM) must be used. A synthesized interferogram is then generated 

from the DEM. To remove the topographic effect, this synthesized interferogram is then subtracted 

from the original raw differential interferogram. On the other hand, if other terms in equation (3) can 

be determined, a DEM can be derived from an interferogram.  
The third term in equation (3) is the phase shift of the slave image relative to the master image 

because of a shift in the orbital trajectory between the two image acquisitions by / /B  in the LOS. Phase 

shift due to parallel baseline / /B  can be estimated by using precise orbits [15-16]. For European Space 

Agency (ESA) SAR data, the Precise Orbit Products provided by ESA is usually used as the initial 

parameters when calculating the orbital baseline. To remove the orbital effects, some researchers 

adjust the fringes in an interferogram to fit the displacements observed by GPS at seven geodetic 

bench marks [17].  
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atm  in equation (3) represents the atmospheric effect. Atmospheric effects should be corrected for 

the radar interferograms [6,14,18-21]; otherwise, radar interferograms will sometimes be 

misinterpreted. For instance, the large scale atmospheric delay observed at lower altitudes around a 

volcano could produce interferometric fringes in these areas that might be misinterpreted as indication 

of a large-scale inflation or deflation of the volcano. The atmospheric phase component is hard to 

calculate. A practical method to reduce the atmospheric effect in an interferogram as represented by 

equation (3) is to generate and combine multiple interferograms, a technique known as stacking [6]. 

Some permanent land markers such as rocky areas are very stable surfaces, the phase is preserved and 

thus the phase difference in an interferogram is always zero. This property of permanent scatterers can 

be made use of in removing atmospheric contribution to the overall phase difference. 

dielectric in equation (3) represents the effect due to changes in dielectric property of the ground 

pixel. For instance, dielectric constant changes due to soil moisture change. If other terms in equation 

(3) can be determined, soil moisture can be derived from an interferogram [22-23].  

pn  in equation (3) is the phase noise. To reduce phase noise in an interferogram, adaptive 

filtering and multi-look techniques [1,24] are generally used or a weighted power spectral density filter 

and an adaptive filter are applied to each interferogram [24]. 

The last term in equation (3) represents the general 2 ambiguity associated with phase wrapping. 

Phase unwrapping is necessary to resolve this ambiguity. The aim of phase unwrapping is to find an 

estimate of the ‘true’ phase value given its principal wrapped value. A two-dimensional (2D) phase 

unwrapping is an important but complicated task. Even though it is impossible to completely unwrap 

the true phase, a wide range of methods have been developed to get good phase estimates [2,3,25-36]. 

Recent development shows that derivation of surface displacement can also be made without 2D phase 

unwrapping [37].  

To derive the ground displacement from an interferogram, the effects due to stereo topography, 

base line, shift, atmosphere, dielectric property change of the ground surface, system noise, and phase 

wrapping can be corrected in principle according to equation (3). In reality, some residual phase error 

still exists. Orbital and topographic phase residuals are often removed by mainly adjusting the 

perpendicular baseline line component and yaw angle. If at least parts of the two images are coherent 

and the all other effects are removed, the remaining phase differences shown up as fringes in the final 

differential interferogram are the result of the range changes of displaced points on the ground [5]. 

Each fringe to the next one corresponds to a phase change of 2. The total number of fringes is 

converted to displacement value (the projections along the SAR LOS of actual displacements) by 

multiplying by /2. This configuration makes InSAR capable of measuring ground-surface 

deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens-of-meters over a 
large region. The LOS displacement 0D  is then converted to the horizontal displacement D  in the 

direction of displacement as: 

 0 / sin cosD D      (4)

where   is the angle between the direction of horizontal displacement and the projection of the radar 

looking direction on the ground range, as shown in Figure 1. Once the displacement is obtained, the 

average deformation rate is estimated by dividing the displacement by the time span between the two 

image acquisitions used to form the interferogram.  
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1.6. Selection of Interferometric Pair 

 

The success of the technique of repeat pass interferometry depends largely on high correlation and 

coherence of the two sets of signals recorded during the two repeat passes if the scattering properties 

of the ground surface remain undisturbed between the repeats. Generally, selection of an 

interferometric pair is based on the sensitivity of the interferogram formed from the coregistered image 

pair to the topography as expressed by the altitude of ambiguity (ha) and coherence.  

The altitude of ambiguity (ha) is related to the orbital separation between the image acquisitions, 

and equals the size of a DEM change that would produce one artifactual fringe. The ha is given by 

[10,38]: 

sin

2a

R
h

B

 



  (5)

Topographic effects can be ignored for image pairs whose ha values are much higher than the 

estimated vertical accuracy of DEM.  

Interferometric correlation, or coherence, that measures the variance of the interferometric phase 

estimate is usually calculated from the complex image pair. Coherence decreases with increasing 

system noise, volume scattering, and temporal changes, and therefore contains thematic information. 

Weathering, vegetation, random change in dielectric property within subpixel scale all affect the phase, 

leading to temporal decorrelation [39]. Coherence is thus a parameter that characterizes the quality of 

the interferogram formed from each pair of co-registered complex images. For each pair of such 

images, the correlation is estimated using the following equation: 

   

       *,,*,,
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where 1C and C2 represent the master and slave complex images, respectively.  jiC ,  represents the 

complex value of pixel  ji, , where i represents the range direction and j represents the azimuth 

direction.  *, jiC  is the complex conjugate of  jiC , . N is the number of pixels in the range direction 

and M is the number of pixels in the azimuth direction, which are to be averaged to generate 

correlation of a single pixel that has different resolution from the original complex images. For 

instance, if the complex image has a range resolution of 20 m and an azimuth resolution of 5 m, setting 

N = 2, M = 4, equation (6) will generate a correlation image that has a pixel size of 40 m x 40 m, 

comparing to the original 5 m x 20 m pixel size.  

 

1.7. Formation of an Interferogram 

 

SAR data processing to form an interferogram includes: 1) conversion of the two raw data images 

to two single-look complex (SLC) SAR images; 2) coregistration of the two complex SLC SAR 

images to an accuracy of less than 0.1 pixel; 3) phase noise reduction - removal of radar system noise, 

effect due to image misregistration, and speckle effects caused by the complex nature of the imagery 
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by applying a coherent average filter; removal of the effect due to local topographic slopes using pulse 

response filters; removal of atmospheric effect; and elimination of the topographic effect through 

subtracting the fringe pattern calculated from just an accurate DEM; 4) phase flattening; 5) 

interferogram reprojection; and 6) phase unwrapping. Phase flattening is a technique of removing the 

flat Earth phase function that can be calculated based on the image acquisition geometry from the 

actual phase function recorded in the interferogram. In areas where the elevation changes more rapidly 

(mountain regions), the frequency of the phase wrapping increases. Generally, the higher the wrapping 

frequency, the more difficult the area is to be unwrapped. Phase flattening can enhance phase 

unwrapping. However, in the areas where the wrapping frequency exceeds the spatial sampling 

frequency of the phase flattened interferogram, phase information is lost and phase unwrapping is not 

possible in the areas. Phase unwrapping is problematic due to fringe discontinuities caused by layover 

[40], areas of low coherence, and phase noise.  

Two methods are usually used to form an interferogram: 1) The images are combined two by two 

using the digital elevation model elimination method. This method reveals fringes corresponding to 

contours of equal change in satellite-to-ground distance (i.e. range); 2) Method that uses three radar 

images [41] and does not require the use of an existing topographic mode [42]. For more detailed 

description of the procedure of interferogram, refer to the reviews [1,3]. 

 

1.8 Limits of Conventional InSAR and New Remedy 

 

There are two conditions to be met in order to observe a fringe pattern. The first condition is that 

the spatial distribution and the electromagnetic properties of elemental scatterers contained within a 

pixel remain almost completely stable. A second condition is related to the difference between the two-

way slant range distances, namely, measured along the radar LOS, corresponding to one pixel on the 

two SAR images in the interferometric pair. In particular, this condition requires that the difference 

between the two-way slant range distances between neighboring pixels has to be smaller than half of 

the radar wavelength  in order to observe interferometric fringes without ambiguity [43]. 

The first limit of InSAR is related to temporal decorrelation [39], i.e. temporal stability of the 

spatial distribution of scatterers within a pixel. When the moisture and/or the freeze/thaw conditions of 

near surface layer change, or when surface is strongly disturbed, the spatial pattern of SAR sensitive 

scatterers within a pixel changes over time, resulting in random pattern of interferometric phase in a 

pixel neighborhood, or destruction of fringe pattern. Temporal decorrelation makes InSAR 

measurements unfeasible over such surfaces. 

The second limit of InSAR is the spatial gradient or deformation time rate. If the relative 

displacement between two neighboring pixels exceeds one fringe, it cannot be detected using InSAR. 

Thus, the maximum detectable deformation gradient is one fringe per pixel. This is understandable 

since the phase difference value in a wrapped interferogram is between 0 and 2π. This means that the 

maximum difference in phase between two neighboring pixels is 2π, corresponding to one fringe 

(wavelength/2). For an interferogram formed from two images acquired at different times, this also 

translates to the maximum detectable deformation rate of one fringe per the time difference between 

the two acquisitions. For instance, if the second image is acquired N days later, then the average 

deformation rate should not exceed wavelength/(2N) days. If the average deformation rate exceeds this 
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value, the two pixels from the two images are incoherent, no fringe will be generated. For a satellite, 

the orbital cycle is defined as the period of time when the identical orbit is repeated. If the orbital cycle 

for a specific satellite SAR system is M days, the maximum mean deformation rate by such a 

satellite’s SAR images is wavelength/(2M) days. For instance, for ERS-1/2 satellite of which its SAR 

wavelength is 5.67 cm, for its 35-day orbital cycle, the maximum detectable average deformation rate 

is 1.62 mm/day. If the tandem images of ERS-1 and ERS-2 are used to form tandem interferogram, the 

equivalent orbital cycle is one day, the maximum detectable average deformation rate can be increased 

to 56.7 mm/day. Phase unwrapping techniques can be applied and unwrapped interferograms, in which 

phase values vary from 0 to over hundreds of 2, can resolve the limit of spatial gradient or 

deformation time rate. 

An additional limit of InSAR is that the deformation amount inferred from the number of fringes 

are relative changes, not absolute changes relative to zero deformation. However, if a permanent 

marker can be identified in the image, this limit can be removed. To obtain absolute surface 

displacement, an assumed surface reference of zero (permanent marker) or known velocity needs to be 

identified in the interferogram. Since a fringe is a pattern, thus deformation can not be derived from a 

single pixel or a couple of pixels. Counting the number of fringes is much easier from an interferogram 

of larger area that not only include the deformed area where fringes are present, but also incoherent 

areas or permanent areas where phase values are always zero. This requires a large swath in both 

cross-track and along-track directions. If the spatial gradient is too small, that the whole swath is 

within one cycle, the interferogram cannot detect the change. Also for a specific image-acquisition 

system, sufficient magnitude and proper orientation of the deformation field is also imperative to be 

detected by the interferogram.  

The multi-image Permanent (or Persistent) Scatterer (PS) technique deals with these problems in an 

innovative way [44-45]. The PS technique offers a systematic processing strategy, capable of utilizing all 

archived SAR data of a certain area from repeat orbits, and creating a stack of differential interferograms 

that have a common master image. Instead of analyzing the phase in a contiguous spatial domain, the phase 

of isolated points (permanent scatterers) with strong and stable radar returns is analyzed as a function of 

time, baseline, and space. The different spatio-temporal-baseline relations of the phase components of the 

PSs to topography, displacement, and atmosphere are used for successful separation of these different 

phase components in an estimation procedure. The invention of this technique was a big step forward 

towards a high accuracy observation of slow moving surfaces over long time spans, as it enables the 

identification, isolation, and estimation of millimeter surface deformation processes from space. 

 

1.9. SAR Sensors for InSAR and InSAR Software 

 

The first sensor in space for single-pass interferometry was the Shuttle Radar Topographic Mission 

(SRTM). Sensors for single-pass interferometry also include Topographic SAR (TOPSAR). Space-

borne platforms from which SAR images can be used to form repeat pass interferograms include 

spaceborne imaging radar sensors decommissioned: Seasat (1978 - 1978) [46], European Remote-

Sensing Satellite-1 (ERS-1) (1991-2000), Japanese Earth Resources Satellite (JERS-1) (1992 - 1998), 

Spaceborne Imaging Radar (SIR-C) (1994) and still in commission up to 2008: European Remote-

Sensing Satelite-2 (ERS-2) (1995 –present); Canadian Radar Satellite RADARSAT-1 (1995 - present) 
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[47], European Environmental Satellite (Envisat) Advanced Synthetic Aperture Radar (ASAR) (2002 - 

present) (http://envisat.esa.int/ handbooks/), Japanese Advanced Land Observation Satellite (ALOS) 

phased-array type L-band (PALSAR) (2006- the present; http://www.palsar.ersdac.or.jp/), German 

TerraSAR-X (2007- the present; http://www.dlr.de/tsx/start_en.htm), RADARSAT-2 (2007 - present; 

http://www.radarsat2.info/), and Italian constellation COSMO-SkyMed (2007 - present) [46,48]. 

Because of the 1-day interval SAR acquisition capability from two identical C-band instruments 

onboard ERS-1 and ERS-2, the ERS-1/2 tandem mission [49] from 1995 to 2000 increased the 

probability of having a high coherence between the acquired data, making it possible for monitoring 

more rapid geophysical or biophysical processes. Additional spaceborne systems include the 

Spaceborne Imaging Radar-C/X-band Synthetic Radar (SIR-C/X-SAR) (operated for two 10-day 

periods during 1994). In addition, the 11-day NASA STS-99 mission in February of 2000 used a SAR 

antenna mounted on the space shuttle to gather data for the Shuttle Radar Topography Mission. Table 

1 gives the specifications of these systems. 

Table 1. InSAR systems and characteristics. 

Sensor 
Repeat cycle 

(days) 
Wavelength 

(cm) 
Resolution (m) 

(azimuth x ground range) 
Look 
angle 

 
 
ALOS/PALSAR 

 
 

46 

 
 
23.62 cm 

Fine mode 1 **10m x (7-44m) 8-60 
Fine mode 2 **10m x (14-88m) 
*PL mode **10m x (24-89)m 8-30 
*SC mode 100m x 100m 18-43 

 
COSMO/SkyMed 

 
16 

 
3.125cm 

*SL mode  <1m >25-50 
*SM mode  <3 -15m >25-50 
*SC mode < 30-100m >25-50 

 
 
Envisat/ASAR 

 
 

35 

 
 
5.63 cm 

 Image mode #30m x 30m 15-45 
*AP mode #30m x 30m 15-45 
*WS mode 150m x 150m 17-42 
 Wave mode 10m x 10m 15-45 
*GM mode 1km x 1km 17-42 

ERS-1 3, 35, 168 5.66 cm 30m x 30m 20-26 
ERS-2 35 5.66 cm 30m x 30m 20-26 
JERS-1 44 33.53cm 18m x 18m 35 
 
 
 
RADARSAT-1 

 
 
 

24 

 
 
 
5.66 cm 

Fine mode 9m x (8,9)m 37-47 
Standard mode 28m x (21-27)m 20-49 
Wide mode 28m x (23,27,35)m 20-45 
*SC narrow mode 50m x 50m 20-49 
*SC wide mode 100m x 100m 20-49 
Extended H mode 28m x 25m 52-58 
Extended L mode 28m x 25m 10-22 

 
 
 
RADARSAT-2 

 
 
 

24 

 
 
 
5.55 cm 

Ultra-fine mode 3m x 3m 30-49 
Multi-look fine 
mode 

8m x 8m 30-50 

Fine mode 8m x 8m 30-50 
Standard mode 26m x 25m 20-49 
Wide mode 26m x 30m 20-45 
*SC narrow mode 50m x 50m 20-46 
*SC wide mode 100m x 100m 20-49 
Extended H mode 26m x 18m 49-60 
*Fine QP mode 8m x 12m 20-41 
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*Standard QP 
mode 

8m x 25m 20-41 

Seasat 3 23.44 cm 25m x 25m 20-26 
 
SIR-C/X-SAR 

 
 

23.5cm 
5.8cm 
3.1cm 

 
(10-50)m - variable 

 
(20-65) - 
variable 

 
 
TerraSAR-X 

 
 

11 

 
 
3.125cm 

*SL mode  2m x (1.5-3.5)m 20-55 
*HR SL mode 1m x (1.5-3.5)m 20-55 
*SM mode  3m x (3-6)m 20-45 
*SC mode 16m x 16m 20-45 

* PL – polarimetric; SC – ScanSAR; SL – spotlight; SM – stripmap; AP - alternating polarization; WS - wide swath; 
GM - global monitoring; QP = quad polarization; HR – high resolution;  

** The azimuth resolution of 10 m is for two looks. 
# Resolution (azimuth x ground range) for image mode single look complex images is 6 m x 9 m; for alternating 

polarization single look complex images is 12 m x 9 m. 

 

An interferogram can be computed with both free InSAR software packages and commercial 

packages. Free InSAR packages for academic uses include: 1) the Repeat Orbit Interferometry 

Package (ROI_PAC) developed at the Jet Propulsion Laboratory and the California Institute of 

Technology (JPL/Caltech), available at: http://www.openchannelfoundation.com/ 

projects/ROI_PAC/index.html; 2) Doris (Delft object-oriented radar interferometric software 

developed by the Delft Institute of Earth Observation and Space Systems of Delft University of 

Technology downloadable from http://enterprise.lr.tudelft.nl/doris/; 3) Interferometric Processing 

System (IPS) developed by the Alaska Satellite Facility (ASF). Commercial packages include: 1) 

DIAPASON originally developed by the French Space Agency (CNES), now maintained by Altamira 

Information for both UNIX and Windows platforms (http://www.altamira-

information.com/html/index.php); 2) GAMMA SAR developed by Gamma Remote Sensing for 

Solaris, Linux, OSX, and Windows platforms (http://www.gamma-rs.ch/software/) [50-51]; 3) 

IMAGINE InSAR embedded in ERDAS IMAGINE remote sensing software suite developed by Leica 

Geosystems Geospatial Imaging (http://gi.leica-geosystems.com/default.aspx); 4) Pulsar, developed by 

Phoenix Systems for UNIX based platforms (http://www.phoenixsystems.co.uk/); 5) SARscape, that 

was developed by sarmap s.a.; a Swiss company (http://www.sarmap.ch/). SARscape is interfaced with 

ENVI and can be run on Windows or Linux based personal computers. 

 

2. Applications of InSAR 

 

Repeat-pass interferometry allows the detection and mapping of the earth surface by using the 

temporal and spatial coherence characteristics, which can be successfully used for land cover 

classification, mapping of flooded areas, monitoring of geophysical parameters. The basic 

measurement of interferogram is the changes of spatial and/or dielectric properties using two images. 

The surface deformation and/or dielectric property change can be due to various forcings: earthquakes, 

landslides, lake or river surface water flow, oceanic water motion, movement of glaciers and ice sheet, 

accumulation of snow, forest canopy height, sand dune movement, dielectric constant change resulted 

from soil moisture change, freezing, or thawing, land subsidence due to ground water withdrawal, 

underground mining, hydrocarbon extraction, and permafrost melting, etc. The ground surface 

“deformation” can be anything the ground pixel is displaced between the two image acquisitions such 
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as crustal deformation due to earthquakes, volcanoes, surface subsidence due to ground water exhaust 

or underground mining activities, river water level changes, etc. Therefore, applications of InSAR can 

be very broad – in seismology: land surface deformation due to earthquakes; in natural disaster 

monitoring and assessment: volcanoes and landslide movement; in surface water hydrology: water 

level monitoring, snow accumulation; in ground water hydrology: land subsidence due to excess water 

pumping or uplift due to ground water recharge; in glaciology: ice sheet motion and rheology, glacier 

flow, postglacial rebound of the lithosphere; in mining: land subsidence due to mining; in forestry: 

forest canopy height, forest mapping and monitoring; in environmental and structural engineering: 

ground subsidence and structural stability.  

 

2.1. Application in Seismology 

 

Coseismic deformation and postseismic relaxation of the lithosphere, if net surface deformations are 

present and fall within the limits discussed above between the two image acquisitions, should be 

detected by the interferogram. To detect the coseismic deformation due to an earthquake, the 

interferogram must be formed from two SAR images with one before and the other one after the 

earthquake. Since the technique can potentially measure centimeter-scale changes in deformation over 

time spans of days to years, it has applications for earthquake assessment and geophysical monitoring 

of earthquakes postseismic fault activity. Massonnet and Rabaute [52] formed the first earthquake 

interferogram from two ERS-1 SAR images taken before (April 24, 1992) and after (June 18, 1993) 

the Landers earthquake that occurred in California on June 28, 1992, illustrating the capability of 

InSAR in mapping the coseismic deformation field. Massonnet and Feigl [53] then formed an 

interferogram from two images acquired 40 days and 355 days after the main Landers earthquake and 

found a range shortening of 112 mm due to the Fawnskin earthquake, an aftershock in the Landers 

sequence that produced a coseismic bulge. The InSAR technique is now applied widely in 

characterizing the coseismic deformation field resulted from earthquakes, fault geometry and slip 

distribution [54-55], postseismic deformation and relaxation, and interseismic creep [38,56-60]. Cakir 

et al. [61] studied the February 24, 2004 Al Hoceima (Morocco) earthquake (Mw = 6.4) using Envisat 

InSAR data and inferred that the 2004 earthquake took place most likely on a NW–SE trending right-

lateral fault. Akoglu et al. [62] studied the May 26, 1994 (Mw = 6.0) and February 24, 2004 

earthquakes in the same region using ERS and Envisat InSAR data, respectively, and found that the 

1994 earthquake being associated with N23° E trending left-lateral fault and the 2004 earthquake with 

N45°W trending right-lateral fault. Akoglu’s [62] results supported Cakir et al.’s [61] inference for the 

2004 earthquake, which is in contrast with previous seismic interpretations. InSAR is now actively 

used by seismists to provide significant information on the main characteristics and location of 

earthquake ruptures, especially of earthquakes that took place on blind faults; and to estimate the 

optimal fault geometries and slip distribution [63-64]. The surface deformations derived from 

interferogram that indirectly reflect the brittle processes of an earthquake fault was used for dynamical 

fault model reconstruction [65]. A major limitation of InSAR for deformation studies is that the 

deformation is only one dimensional along the satellite’s line of sight, while most deformation is better 

characterized using three dimensional geodetic data. Many studies have incorporated multiple radar 

passes using different geometries to overcome this limitation (e.g. [66-68]). Recent developments of 
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InSAR in deformation mapping include extraction of the 2-dimensional displacement using split-beam 

processing [69]. The availability of SAR data from new SAR systems such as ALOS PALSAR, 

Envisat ASAR, RARSAT-2, TerraSAR-X, and COSMO-SkyMed will enhance monitoring 

earthquakes and provide model constraints in seismological studies. Pritchard and Fielding [64] used 

the first InSAR data from the ALOS PALSAR data and the SAR data of wide swath mode of the 

Envisat ASAR to analyze a sequence of earthquakes on the subduction megathrust near Pisco, Peru. 

InSAR data analysis indicated that the main slip after the mainshock is about 70km from the 

pypocenter, suggesting a very low rupture velocity (< 1.5km/s) or a very long slip rise time.  

 

2.2. Application of InSAR in Volcanology 
 

Volcanic processes such as magma accumulation in subsurface reservoirs, magma transport and 

emplacement beneath volcanic structures will results in surface deformation, which InSAR can be used 

to detect. For instance, some offshore mud volcanoes in the South Caspian region possess shallow mud 

chambers which refill prior to eruption. The inflation of the chamber caused by the refill may produce 

measurable surface deformation that can be detected by interferogram [70]. Spatio-temporal evolution 

of volcanic processes can be derived from analysis of surface deformation derived from a temporal 

series of InSAR interferograms [71]. The measured deformation can then be used as constraints to 

inverse the depth, size, shape of the magma chamber (and pressure change) and magma supply 

dynamics, because point sources [72], dikes and sills [73-74] result in different surface deformation 

patterns in the modeling of deformation caused by magma intrusion [75-78]. Therefore, interferogram-

derived deformation is widely used as constraints for modeling studies of volcano deformation to 

determine magma sources and dynamics [71,79-80], to identify faults caused by the volcanic activities 

[81-82]. 

Knowledge of temporal and spatial distribution of magma accumulation, transport, and 

emplacement can help locate magma reservoirs and the formation of eruptive vents, pave the path of 

understanding volcanic processes, development of sophisticated and comprehensive models for 

magma intrusion, recharging, and volcano spreading, and competent forecasting of future volcanic 

eruptions, flank instabilities and sector collapses. GPS is one of the most suitable techniques to 

measure ground surface deformations because of high accuracy and provision of three dimensional 

components of deformation field. But the limitation of GPS station density (GPS stations per unit area) 

and the continuous coverage of interferogram make the integration of InSAR and GPS a useful 

approach to map highly accurate deformations (i.e. at sub-centimeter levels) with unprecedented 

spatial coverage. Interferogram alone, or in combination with other data sets of such as GPS, 

geodimeter, and micro-gravity data are now widely used for pre-, during-, and post-eruption 

observation of volcanoes. Examples include the measurement of deflation induced by the activation of 

Etna volcano from May 17, 1992 to October 24, 1993 by Massonnet et al. [83], the measurement of 

the deformation field associated to the 1997 eruption of Okmok volcano in Alaska [84] and the Campi 

Flegrei caldera activation [85], observation of volcanic uplift and `trapdoor' faulting [81], monitoring 

of deep accumulation of magma and large-scale inflation in the early development of magmatic 

systems before eruption [80,86-89], caldera deflation and volcano contraction [90], regional 

subsidence due to volcanic eruption [81,91], magma intrusions and edifice radial spreading after 
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eruption during magma-recharging phase [92-93], subsidence of dormant volcanoes [94], and magma 

chamber geometry estimation [95].  

Fialko et al. [96] used the interferogram data to constrain the dynamics and morphology of the 

deformation source responsible for the 1997–1998 inflation crisis in the Long Valley caldera 

(California). Joint inversion of the interferogram and two-color geodimeter data for the period between 

1996 and 1998 suggests that the deformation source has the shape of a steeply dipping prolate spheroid 

with a depth of 7 km, major and minor axes of 4.2 and 1.8 km, respectively, and an excess pressure of 

several megapascals. Using InSAR, deformation field of Nisyros volcano (Greece) was studied by 

several authors [97-100]. The seismic unrest without eruption started at the end of 1995, peaked in 

August 1997, and ended at the end of 1998. For these studies, InSAR provides the only tool to assess 

the deformation fields of the volcano before 1997 when the first GPS stations were set up. Sykioti et al. 

[100] showed that a ground uplift of 84mm in the slant range direction was observed between June 

1995 and May 1996 and further uplift of 56mm from May 1996 to June 1997. A subsidence of 42 mm 

was observed between June 1997 and June 1999. The change from inflation to deflation most likely 

took place at mid-1998. Lagios  et al. [97] further study showed that a deformation of at least 56mm 

along the slant range appeared for the period 1996 through 1999, which is consistent with modeling 

results using a two-source model constructed to fit the GPS observed deformation. Ruch et al.’s [89] 

study on the Lazufre volcanic region (Chile), where no deformation was detected previously, shows 

that an uplift of the region of up to ~3 cm·yr−1 during 2003–2006 was observed on a large scale (1100 

km2) using interferogram data. 

Amelung et al. [81] constructed temporal deformation maps of volcanoes with or without eruption 

in the Galápagos Islands using satellite radar interferometry. Uplift rate for each volcano, which is a 

good indicator of magma accumulation, is then derived from these maps. These maps help in 

identifying inflation, co-eruptive deflation and shallow dyke intrusion of volcanoes with eruption; and 

in identifying inflating sill and ‘trapdoor’ faulting of volcanoes without eruption. Using GPS and 

interferogram data, Geist et al. [90] shows that during the 8 days of the 2005 eruption of Sierra Negra 

volcano, Galápagos, Ecuador, the caldera floor deflated by about 5 m, and the volcano contracted 

horizontally by about 6 m. Based on these estimates, the total eruptive volume is estimated to be about 

1.50×108 m3. Abidin et al. [91] used InSAR, in combination with GPS, studied the subsidence and 

uplift of a populated area of Sidoarjo, East Java are due to the eruption of the Lusi mud volcano during 

2006-2008. They found that the earth’s surface has been subsiding at rates of 0.1–4 cm/day. Maximum 

rates of subsidence occurred in an area 300–400 m to the northwest of the main mud volcano vent. 

Horizontal displacements were 0.03–0.9 cm/day and were also towards this area. In general uplifts of 

up to 0.09 cm/day were recorded in areas outside of the edifice. Changes in elevation measured using 

interferogram provide regional datasets of subsidence/uplift. de Zeeuw-van Dalfsen et al. [101] using 

interferograms combined with micro-gravity and GPS data as constraints to generate a model for the 

processes operating at Krafla volcano and show that the rate of deflation at Krafla is decaying 

exponentially, suggesting a drainage rate of ~0.23 m3/s.  

Lundgren et al. [92] studied the post-eruption deformation evolution of Mount Etna volcano from 

1992 to 2001 by more than 400 temporal radar interferograms from ERS-1/2 data formed using the 

small baselines subset (SBAS) technique [102]. Their results show that during this time interval Mont 

Etna volcano experienced magmatic inflation and radial spreading to the West, South, and East, 
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suggesting gravitational spreading of the volcanic edifice; and growth of a southeastern basal anticline, 

suggesting deep-seated magma intrusions and edifice spreading. Palano et al. [93] combined InSAR 

and GPS data to study the ground deformation field at Mount Etna volcano during the magma-

recharging phase over 1993–2000 after the 1991–93 eruption. Their results show inflation since 1993, 

a deep intrusion on the western flank between March and May 1997, a general deflation at the upper 

part of the Volcano from 1998 to 2000, and a continuous eastward to south-eastward motion of the 

eastern sector of the volcano. Previous studies of the deformation fields of Mont Etna volcano include 

[83,103-107]. These studies will help understand the volcanic processes, especially the synergic action 

of various forcings such as gravity, magma forcing, dyke intrusion, and regional tectonics in the 

evolution of an active volcano.  
 

2.3. Applications of InSAR in Land Subsidence and Landslides 
 

2.3.1. Land Subsidence and Uplift 

 

Land subsidence, lowering of the land surface by a variety of subsurface displacement processes, 

affects an aggregate area of more than 44,000 km2 in 45 states in the U.S. [108]. Common causes of 

land subsidence include sediment consolidation due to its own weight and tectonic movements 

(geological or natural subsidence), withdrawal of ground water and geothermal fluid, oil and gas 

extraction from underground reservoirs; dissolution of limestone aquifers (sinkholes); collapse of 

underground mines; drainage of organic soils; and initial wetting of dry soils (hydrocompaction). 

Measuring the spatial and temporal changes in the subsidence pattern using interferogram can provide 

constraints on the permeability and compressibility properties of the compacting formations, which are 

important parameters for predicting future subsidence.  

Land subsidence can be caused by groundwater pumping, which results in compaction of aquitards 

during the slow process of aquitards drainage. Subsidence detected from interferogram can be used for 

parameter estimates in simulations of aquifer system compaction [109]. Subsidence from excess 

ground water withdrawal has impacted costly on both the operation and design of canals in California 

[110]. The spatial scale of the land subsidence can be well monitored using InSAR. For instance, 

during 1950–1970, the city of Venice (Italy) was affected by serious land subsidence with highest rates 

due to groundwater withdrawals [111-113]. Since 1970, drastic measures to reduce both industrial and 

other artesian extractions were taken to stop the subsidence due to ground water withdrawal. But 

subsidence due to consolidation processes may still be continuing. Carbognina et al. [111] showed that 

the vertical displacement rates are between + 1.0 and -2.0 mm/year as derived from interferogram 

images ERS-1/2 from 1992 to 1996. This indicates the quasi-stability of the sediments in the landward 

and central part of the city during the time period of time, but some small zones subsiding at a rate 

greater than 1 mm/year in western and eastern areas consolidation processes may still be continuing. 

This type of subsidence due to groundwater pumping was also observed in other cities in Italy [114]. 

In semi-arid and arid regions, ground water is the main water resources for civilian use and agricultural 

irrigation. Excessive withdrawal of ground water can cause large scale subsidence. InSAR application 

will continue to be very useful in monitoring the land subsidence due to excessive withdrawal in the 

next decades. Conversely, during a wet season, ground water recharge makes the ground-water levels 
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to rise. Originally unsaturated sediment shifts from the granular skeleton to the pressurized pore fluid, 

causing the skeleton to expand and the surface to up lift. From interferogram analysis, Hoffmann et al. 

[115] showed seasonal subsidence and uplift in Las Vegas valley, Nevada. Lu and Danskin [116] 

successfully detected an uplift of several centimeters in the Bernardino basin of Southern California 

due to ground-water recharge using interferogram analysis of ERS-1 and ERS-2 images. These 

seasonal deformation data contain important information about the hydrogeologic properties of the 

aquifer system and are of considerable value in assessing the effectiveness of ground water recharge 

programs. Using InSAR, Bawden et al. [117] showed that seasonal fluctuations of 50 mm of basin 

uplift due to ground water recharge during the wet winter season, and 60 mm of subsidence due to 

ground water withdrawal during the dry summer season in Santa Ana basin, California, with the 

greatest fluctuations near the city of Santa Ana and at the northwestern end of the basin. Similar 

analysis for the Los Angeles basin by Watson et al. [118] verified that vertical motion related to annual 

variations in the elevation of the water table needs to be taken into account when interpreting the 

geodetic data for tectonic motion. Schmidt and Bürgmann [119] used 115 differential interferograms 

over the period from 1992 to 2000 to study the spatial and temporal pattern of uplift of the Santa Clara 

Valley aquifer so that both seasonal uplift and subsidence and long-term uplift can be resolved. The 

seasonal surface deformation observed reflects the poroelastic response of the confined aquifer 

resulting from the redistribution of groundwater, while the long term uplift reflects the net increase in 

pore fluid pressure. Results from Schmidt and Bürgmann’s [119] study showed that the recovery of 

groundwater levels in the Santa Clara Valley which began in the 1960s appears to have continued 

through the 1990s as inferred from the net regional uplift. The knowledge of spatial and temporal 

pattern of deformation of an aquifer will help understand the mobility of groundwater within the 

aquifer, the distribution of permeable units, and the mechanics of the aquifer system.  

Warm or hot ground water in the areas of hot springs or volcanic zones is a useful energy resource. 

Hot water is pumped for its geothermal energy. Like ground water exhaust, however, excess pumping 

of the ground hot water at a speed higher than the recharging rate will cause ground subsidence both 

vertically and horizontally, in severe cases can damage property and environment [120-121]. Land 

subsidence is induced by volume changes or reduction of subsurface pore pressure in the geothermal 

reservoir by depletion of fluid storage as well as thermal contraction. Monitoring the subsidence in the 

geothermal field using precise level network or interferogram is important so that measure can be 

taken to prevent damage to infrastructure and environment. Massonnet et al. [122] formed an 

interferogram from ERS-1 radar images spanning a period of two years near the East Mesa geothermal 

plant in southern California and found as much as 90 mm of subsidence. This subsidence is due to the 

withdrawal of geothermal fluid produced from medium to fine grained quartzose sandstone. The total 

volume loss due to subsidence was estimated to be 3.6×106 m3, in good agreement with a total fluid 

removal of about 5.0×106 m3 from the geothermal reservoir. The same technique is used to monitor the 

deformation of other geothermal fields in Iceland [123]; in Cerro Prieto, Mexico [124]; in Coso, 

Calfornia [125-126]; and in Taupo Volcanic Zone of New Zealand [120]. The objective of mapping 

the subsidence field of the geothermal fields using InSAR is four folded: 1) to assess the 

environmental and structural damage due to excess extraction of geothermal fluids; 2) to derive 

important parameters such as permeability and compressibility properties of the compacting 

formations, the scale and rate of subsidence so that the future subsidence rate and scale can be 
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predicted; 3) to identify areas of infrastructure potentially at risk of structural damage and to reduce the 

impact of future development of the geothermal fields; and 4) to develop future strategy including 

control of extraction rate and reinjection of fluids back to the geothermal fields to minimize 

environmental impact. The environmental impact of subsidence due to excess pumping can be 

substantial. For the East Mesa geothermal field, there are two canals at the vicinity of the subsidence 

field; further subsidence will disturb the normal operation of these canals. Monitoring of the 

subsidence is usually accomplished using leveling network. However, the scope of the leveling 

benchmarks is often limited. InSAR measurements cover area far beyond the boundaries of the 

geothermal systems and beyond the scope of the leveling benchmarks. Thus, InSAR makes it possible 

to interpret the subsidence signals in the context of a wider regional deformation and to identify areas 

of infrastructure potentially at risk of structural damage and to reduce the impact of future 

development of the geothermal fields within a much larger area than ground leveling network can 

cover [120].  

Subsidence of land surface can also be caused by mining activity. Land subsidence due to mining is 

ubiquitous. Underground coal mining has occurred beneath 8 million acres of land in the U.S., more 

than one quarter of which experienced subsidence and thousands of acres in urban areas are threatened 

by subsidence; subsidence from other metal and nonmetal underground mines affected 17,000 acres 

[127]. Subsidence above a mine results from readjustment of the overburden and is thus time-

dependent. Some movements take place during mining and some as early as a decay after mining and 

as late as centuries, depending on the mining method (room and pillar mining, longwall mining, etc.), 

thickness of coal mined, mining geometry, the thickness and geological characteristics of the 

overburden and the mine floor, etc. [127-128]. Monitoring of rate and extent of subsidence above a 

mine is to provide important information on surface developments designed to minimize the impact 

and to make sure if subsidence is complete before construction of surface structure can be carried out. 

Similarly, the amount of subsidence can be derived from the number of fringes on an InSAR 

interferogram. For instance, noticeable subsidence around the underground coal mining near Gardanne 

in southeast France has occurred since the 1960s, when intense coal mining due to mechanical 

extraction began. Waste rock is used to refill the cavities behind the extraction front to reduce collapse 

hazard, but cannot eliminate completely the subsidence. Using InSAR interferogram formed from 

ERS-1 images, Carnec et al. [129] showed that in the underground coal mining field near Gardanne, 

France as much as 42 mm subsidence could occur in 35 days. Further interferometric monitoring of 

subsidence in the coal mining field from images acquired by both European ERS-1/ERS-2 satellites 

between 1992 and 1995 revealed the migration of the subsidence halo caused by the advance of the 

coal working face [130]. Since the underground cavity due to such underground mining activities can 

be triggered by local seismicity, environmental impact due to the potential hazards can be more 

conveniently monitored by precisely mapping the spatial extent of the subsidence. Deformation was 

also recorded by two separate leveling lines covering the same period of time. The rms scatter in 

vertical displacement between the radar measurements and the two leveling lines is 10 mm and 16 

mm. The interferometric study adds to existing surveys. These demonstrations open wide prospects for 

industrial and environmental applications with both economic and legal consequences. 

Land subsidence can also caused by gas/oil extraction. Using InSAR, Bawden et al. [117] found 

that the Wilmington and the Salt Lake oil fields (California) underwent an episodic subsidence rate of 
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28 mm·yr-1 and 11 mm·yr-1, respectively, during 1997 to 1999; while the Santa Fe Springs and 

portions of the Baldwin Hills (BH) oil fields uplifted at a rate of 5-9 mm·yr-1. The uplift of the Santa 

Fe Springs oil field was due to fluid injection, though the uplift mechanism for the Santa Fe Springs oil 

field is unclear. Using interferogram over the oil field of Bakersfield, California, Snieder et al. [131] 

showed that as much as 3 cm land subsidence was observed in the northwest region and the 

southeastern region over an area approximately 5 km wide with as much as 5 cm of subsidence in two 

localized features on the western margin of the subsidence trough. All the subsidence observed in these 

examples was caused by oil extraction. Stancliffe and van der Kooij [132] used the InSAR technique 

to monitor production activity at the Cold Lake heavy oil field (Alberta, Canada). They generated 

contour maps of elevation change from JERS-1 interferograms over the oil field at 43- and 86-day 

intervals. At an area where steam was being injected into the reservoir to mobilize the bitumen, up to 

0.19 m in elevation gain during 43 days was derived, while at an area where the steaming has been 

completed and the pads brought onto production, subsidence on the order of 0.17 m was estimated. At 

the Cold Lake oil field, the injection of steam causes the pump jacks to heave and subside by as much 

as 30 cm during the first steam cycle. Such studies on the correlation between production activity and 

surface deformation may help understand the oil production and at the mean time reduce the 

environmental impact.  

 

2.3.2. Landslides 

 

InSAR appears attractive for landslide hazard investigations and possibly for preliminary warning. 

However, the steep and rough topography typical of landslide-prone areas, relative large rates of 

movement causing phase ambiguity problems and signal decorrelation, together with the fact that local 

atmospheric variations can be particularly pronounced in regions with strong topographic relief, 

leading to strong atmospheric phase artifacts, often hamper the interferometric pre-processing, making 

it difficult to estimate displacements [1,6,43,133]. Thus, in many cases, the spaceborne interferometric 

monitoring of mass movements was suggested to be used together with ground-based SAR 

interferometer systems [134]. In order to overcome the problems associated with decorrelation noise 

caused by random temporal variations of terrain reflectivity and atmospheric delay, one possibility is 

to apply the technique of “permanent scatterers (PS)” [44-45] that allows to obtain millimeter-level 

accuracy displacement measurements over isolated stable points in the scene. Successful applications 

of InSAR technique to landslide monitoring and slope instability studies include [45,133,135-142]. 

Catani et al. [43] demonstrated that on average, the slope angles computed via interferometric methods 

are generally in better agreement with landslide locations than DEM slope angles, indicating the 

usefulness of InSAR to help categorize the landslide hazard levels of slope.  

 

2.4. Applications of InSAR in Glaciology 

 

Glaciers and ice sheets are sensitive to internal instabilities or climate fluctuations. Continuous 

retreat of glaciers and disintegration of ice shelves cause concerns of rise of sea level and severe 

weather due to changes of climate patterns [143]. To understand well the dynamics of glaciers and 

physical mechanism of motion of ice streams and ice sheets, accurate measurements of displacement 
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and subsequent velocity field of glaciers and ice shelves are important because they provide a better 

knowledge of the rheological parameters that control the flow of glaciers and ice shelf. For instance, 

using an inverse control method, Larour et al. [144] inferred the ice rigidity of the Ronne Ice Shelf that 

best matches the ice velocity field derived from interferogram. Through measurement of displacement 

and velocity field of glaciers, InSAR has been used successfully to monitor glacier surges [145-146], 

ice sheet motion [42,147-149], ground lines of marine ice sheets [42,150], ice sheet topography 

[148,151], glacier ice-flow velocity field [3,147,152-156] and motion patterns [37], and flux [153,155-

157], patterns of wind-drifted snow [158] and snow accumulation [159], uplifting [160] and infilling 

[161] of ice cauldrons, the effects of the subglacial floodwater on glacier flow during draining episodes 

[162], and calibration of numerical modeling of ice shelf flow and dynamics [163]. Vertical 

displacement features derived from interferogram have been used to infer subglacial water movement 

[145,164]. InSAR has also been used to infer the water level or volume change of supraglacial lakes 

through DEM construction and then comparison of height change [165-166]. Combining two SAR 

phase images with 6-day separation, Goldstein et al. [42] used InSAR to measure the flow velocity 

field of the Rutford Ice Stream, Antarctica. In the following years, InSAR has been extensively used 

for mapping glacier surface velocity (e.g. [1,167]). Joughin et al. [153] and Mohr et al. [155] 

combined ascending and descending passes of the satellite and added constraints on the ice flow to 

obtain all three components of the displacement vector. Combining cross-correlation techniques with 

InSAR, 2D ice-flow velocity field can be obtained [152,168]. Glacier velocity data derived from 

interferogram are used to assist locating the supraglacial lakes for glacial hazard management [169]. 

Glacier velocity field derived from interferogram can also help identify the causes that result in ice 

shelf acceleration [163].  

For monitoring of mountain glaciers [37,170], icefalls or marginal shear zones of glaciers, crop  

growth [171], short periods of time (1-3 days) of successive SAR images are required. However, no 

present or planned satellite missions have such short repeat acquisition plan. Thus, it would be difficult 

to measure the motion of mountain glaciers, ice falls, using InSAR. To overcome this difficulty, 

optical images can provide an alternative to interferogram [170] for the measurement of ice flow of 

glaciers. Products derived directly from interferogram will be combined with other science products, 

for instance, DEM from altimeter for mechanistic studies. One example is the combination of ice flow 

velocity derived from interferogram in combination of altimetry data to determine the mechanism of 

the inland thing of Pine Island Glacier, West Antarctica [172]. It is expected more discoveries from 

such combination will occur in the future. 

Non-polar and alpine-style glaciers are recognized as being particularly sensitive to the current 

trend of climatic warming. Mountain glaciers are usually associated with small sizes but larger 

deformation rates than large ice caps, ice fields, and the Greenland and Antarctic ice sheets. Due to the 

displacement gradient (i.e. strain) threshold of InSAR, only a limited number of studies [156,168,173] 

have successfully measured the ice-flow velocity field with InSAR. For this reason, monitoring icefalls 

or marginal shear zones of glaciers and mountain glaciers using InSAR requires short periods of SAR 

images acquisitions so that correlation between the two images are preserved. The ERS-1 ice phase (3-

day orbital cycle) and the ERS-1 and ERS-2 Tandem Mission (1 day separating the passes of the 

satellites) can serve the mission well to derive velocity fields of glaciers. InSAR DEMs are also used 

to monitor thinning of glaciers [174].  
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The identification of patterns of glaciers may be improved in the area by the Differential 

Interferometric SAR (DInSAR) technique [41,58]. It uses the interference of electromagnetic waves to 

measure precise distances or deformation [175]. However, more ERS-1, ERS-2, and Radarsat SAR 

images are needed to generate more interferograms to meet this research goal. When two coherent 

single-look complex SAR images acquired by repeat satellite passes on different dates are co-

registered precisely and the difference of the phase values of individual pixels on the two SAR images 

are calculated pixel by pixel, an interferogram is formed. The resulting interferometric phase of each 

pixel includes components of topography and surface deformation. The topographic component of the 

interferometric phase can be removed using an existing DEM [58] or other interferograms [41] through 

DInSAR techniques. When the separation of the satellite orbits (orbital baseline) is small, the 

topographic component of the interferometric phase is not sensitive to errors in DEM. Using DInSAR 

techniques, accurate motion patterns of glaciers elsewhere have been derived [145,176]. The ASF 

software package - InSAR Processing System (IPS) which was designed for generation of digital 

elevation model (DEM) has been slightly modified to become a DInSAR tool, which has been used 

successfully in a preliminary study of the glaciers in this area.  

 

2.5. Application of InSAR in Hydrology 

 

2.5.1. Soil Moisture Monitoring 

 

Estimates of erosion, deposition, soil moisture, water level change, and net volumetric change of 

discharges may be achieved by using InSAR [131,166,177]. The dependence of the backscattered 

signal intensity to the soil moisture is widely documented in the literature. However, very little has 

been done concerning the sensitivity of the signal phase to the soil moisture conditions. Even if it was 

not possible to determine a simple relationship between the phase and the soil moisture profile (as the 

relationship varies according to the frequency, the roughness, the moisture level and the shape of the 

moisture profile), general trend of the soil moisture influence on the correlation coefficient was put on 

the forefront. Soil dielectric constant not only affects the amplitude of radar backscattering but also the 

phase of backscattered radar echoes. Since the dielectric constant of water is much higher than that of 

the dry soil matrix, soil moisture difference in the ground when the two radar images used to form an 

interferogram are acquired results in difference in phase due to the difference in dielectric constant. 

With the aid of Radarsat-1 images and genetic programming model, Makkeasorn et al. [178] showed 

the average volumetric soil moisture is 15.5 % in the September 2004 in Choke Canyon Reservoir 

watershed, Texas. It may be extended to monitor the soil moisture difference in the future using InSAR. 

Gabriel et al. [12] formed a color-coded interferogram of agricultural fields in the Imperial Valley, 

California from three radar images of L band (25 cm) acquired by Seasat on three separate dates 

spanning 12 days in 1978. The interferogram indicates phase changes associated with watering. The 

phase changed by up to 0.3 cycles on agricultural fields watered by irrigation canals in the time 

between the radar  

images [12]. The phase change translates to an equivalent range change of 3.75 cm. The phase change 

is due to the dielectric constant difference caused by water content in the soil. An equivalent range 

change of 1 cm can be derived from the interferogram. Short-term interferogram on agricultural fields 
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due to soil moisture was also observed in the Ukraine. Nolan et al. [22-23] used ERS-2 interferogram 

data in a high-plains region of Colorado and showed that the observed millimeter-order of change in 

path length may be caused by variations in soil moisture of a few percentages in volume. The 

mechanism of the water content in soil on the radar phase change is still controversial [1,12,22-23], but 

the equivalent range change is related to the amount of water in content will provide a potential useful 

tool for soil moisture monitoring.  

 

2.5.2. Water Level Measurement and Monitoring  

 

In principle, temporal river discharge and the water level variations in lakes or reservoirs can be 

calculated from purely geometric measurements of river cross sections, water levels, and surface 

slopes for both rivers and lakes or reservoirs [179]. Thus, water level (stage) for lakes/reservoirs and 

major rivers can be retrieved from spaceborne remote sensing instruments that have the capabilities of 

geometric measurements [180]. These instruments include imaging radars. Spaceborne water level 

measurement is greatly improved with current measurement [180-182], which was in turn 

demonstrated by using along-track InSAR (ATI) techniques [182-183]. For example, if there are 

persistently existing reflectors (e.g. leafless trees) sticking out of a water surface, interferograms can be 

formed even over the water that can result in cm-scale estimates of changes in water level [183-186]. 

 

2.6. Applications in Forestry 

 

In forestry, canopy height is often used to estimate forest biomass and above-ground forest carbon 

stock as the quantities are allometrically related. The phase of a specific pixel containing vegetation 

depends on vegetation structure, scattering mechanisms, and sensor characteristics (wavelength, 

polarization, looking angle, etc.). Because the phase of a pixel is the sum of the returns from a 

collection of scatterers including stems, branches, twigs, leaves or needles, trunks, and surface soil, the 

types of scatterers interact most strongly with the radar wave depend on the wavelength, polarization, 

incidence angle, and vegetation subpixel fraction. Forest canopy height can be estimated using InSAR, 

including polarimetric interferometry (PolInSAR) [187], because the interferometric phase relates to 

terrain height and vegetation canopy height [2,188-190]. Balzter [2] provides an overview of the 

potential and limits of InSAR for applications to forest mapping and monitoring. Recently, 

polarimetric SAR interferometry (PolInSAR) has received increasing interest for forest monitoring and 

mapping [187-189]. To accurately map the canopy height, phase unwrapping is always important 

[25,26,28,34]. The use of InSAR for estimating canopy height was demonstrated using C-band 

interferometric height discontinuities at forest edges by Hagberg et al. [191] and using effective 

interferometric C-band height from ERS-1 by Askne et al. [192]. Rignot [193] studied tropical rain 

forest using dual-frequency interferometric SIR-C shuttle radar data at C- and L-band. Andersen et al. 

[194] reported that the airborne dual-frequency SAR system TopoSAR consisting of a single-pass X-

band and a repeat-pass P-band interferometric SAR constellation can be used to estimate mean stand 

canopy height, canopy fuel weight and other biophysical parameters. Dual-frequency InSAR method 

involves the generation of a digital terrain model (DTM) underneath the forest canopy from a repeat-

pass long wavelength (e.g.; L-band, P-band). InSAR data taking advantage of its capability of 
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penetration through canopy [195]. The DTM is then subtracted from the single-pass short wavelength 

band (e.g., X-band) interferometric surface height to obtain an estimate of the forest canopy height 

with appropriate adjustment for penetration depth that is vegetation type dependent.  

The availability of an accurate terrain model is often a limitation of this method. Balzter et al. [188] 

estimated the forest canopy height based on a canopy height model derived from dual-wavelength 

InSAR with airborne X-band VV polarized single-pass and L-band HH polarized repeat-pass SAR 

interferometry using data acquired by the E-SAR sensor over Monks Wood National Nature Reserve, 

UK. Then, the forest carbon pools were estimated following allometric methods applied to the 

remotely sensed canopy height models with appropriate allometric adjustment [196-197]. When 

compared to the canopy height measured from LIDAR, the relative error for the canopy height derived 

from dual-frequency InSAR is 28.5%. The rmse of carbon content per hectare contain error 

components from the canopy height estimation but cannot be fully quantified [188]. The dual-

wavelength InSAR technique could be applied to data from a constellation like the TerraSAR-L and 

Tandem-X missions. 

Besides the capability of estimating canopy height and subsequent carbon content, InSAR can also 

be used to improve biomass estimation from radar backscattering coefficient because the fringe 

frequencies of the interferogram can be used to correct radar backscattering coefficient for terrain 

effects and thus improve radiometric calibration [198]. Other applications of InSAR in forestry include 

classification of forest types and land cover [19,192-193,199-202].  

 

3. Discussion and Outlook  

 

InSAR is a relatively new remote sensing technology. Through such a thorough literature review, 

the breadth and depth of this technology become lucid for users. There are several ways to further 

promote the potential of InSAR and possible establishment of InSAR satellites designed for 

operational InSAR application missions [203]. From a technological point of view, removal of the 

atmospheric effect is always a hard task in applications of InSAR in deformation detection. The 

persistent scatterers (PS)  technique [44-45,204] seems very promising in removing atmospheric effect 

without knowing the atmospheric status [137,205]. This technique can also enable removal of DEM 

and orbital errors from each interferogram. These methods rely on the existence of persistent scatters - 

objects that remain highly coherent through time. However, the scarcity of natural persistent scatters 

makes areas containing many potential coherent targets such as buildings as the most favorable region 

for deformation detection. Thus, an establishment of a world-wide network of PS in the future will 

obviously benefit the deformation mapping worldwide.  

Detection of rapid surface displacement using InSAR is often inhibited from the long repeat cycle. 

Except for bare and sparsely vegetated fields, the interferometric correlation decreased too much after 

a 35-day period of ERS-1 or ERS-2. The tandem mission of ERS-1 and ERS-2 [206] and shuttle-based 

SRTM mission demonstrated the necessity of contemporaneous acquisition of image pairs for quality 

interferogram formation by reduction of temporal decorrelation. Because of the ERS-1 payload switch 

off and the phase shift between ERS-2 and ENVISAT SAR sensors, the InSAR tandem acquisition is 

compromised for the near future. In this aspect, synergies among different satellite images should be 

enhanced in the future. Very positive results from ERS-1’s operation at three-day repeat cycle in 1994 
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and the tandem mission of ERS-1 and ERS-2 in 1995-1996 demonstrated that in the future, such 

missions of short repeat cycle is not only necessary, but imperative for the success in monitoring 

surface changes at rapid speed at centimeter or millimeter accuracy.  

As already demonstrated for the monitoring of land subsidence [207], landslides [142], surface 

deformation in heavily vegetated and seasonal snow covered terrain [19,208], and active rock  

glaciers [209-210], L-band SAR has the capability of complementing the existing applications based 

on C-band data. In the case of rapid displacements, the larger wavelength reduces signal decorrelation 

and phase unwrapping problems. Furthermore, the greater penetration of the radar signals into the 

snow and forest at L-band compared to C-band [211] results in a reduced temporal decorrelation. It is 

thus expected that L-band PALSAR data from the ALOS and TerraSAR-L missions would contribute 

to this type of research.  

More technical developments and applications of InSAR are expected with the data available from 

fully-polarized SAR sensors (ALOS, Radarsat-2, TerraSAR-X, TerraSAR-L, etc). Polarimetric SAR 

interferometry will enhance mapping of land cover and forestry [187-189,212]. With more InSAR data 

with short repeat cycle in place, more applications of InSAR are expected in seismology, volcanology, 

glaciology, hydrology, natural hazard monitoring and assessment, land subsidence due to thermal fluid 

pumping or ground water withdrawal or mining, oceanography, forestry. We expect the applications of 

InSAR will expand in other disciplines include archaeology and cultural heritage preservation [213], 

mountain uplift monitoring that is related with tectonics [214], production monitoring of oil fields 

[132], monitoring of injection site of geological CO2 sequestration [215] in the near future. Although 

InSAR is very useful for monitoring the surface deformation, operational use of InSAR for such 

activities is still years away [203]. Limited SAR data suitable for interferometry often makes a 

thorough data analysis for a specific application difficult [70]. The many discoveries from the limited 

number of past SAR sensors are just eye-opening. Dedicated satellite missions with short repeat cycles 

are imperative for integrated studies and operational monitoring of natural hazards (earthquake, 

volcano, and landslides), glacier and polar ice sheets, and large-scale forestry resulting from climate 

change. Cyranoski [216] and Donnellan et al. [217] reported the earth scientists’ aspiration of such 

missions, which becomes even stronger. 
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