
Kent H. Kansala (XTO Energy)
The Haynesville Shale Overview

What is it, where is it …

Geology of play

Key components of “sweet” spots …

Progression of the Haynesville Shale Completion Program

What we do…

Identification/Characterization of the XTO Development Process

How we do what we do…

Production practices

Tubing design, facilities, liquid loading…

Proprietary
Unconventional Resources

Haynesville Shale – Let’s get our bearing

Pay Zones

- Rodessa
- James Lime
- Pettet
- Travis Peak (Hosston)
- Cotton Valley Sand
- Bossier
- Haynesville Shale
- Cotton Valley Lime (Haynesville)
- Smackover (Gray)

150’ - 300’ thick
10,500’ - 13,500’ TVD
Unconventional Resources

Key Geologic Drivers of HVS

- HVS is Organic rich Marine Black Shale
- **TOC**
 - Key Driver
 - Total Organic Carbon = lots of time, lots of heat = Kerogen=oil/gas
 - More TOC moving South in play
- **Calcite**
 - More Calcite, less clay, and more TOC = Pay (Brittle Rock)
 - Higher Porosity (Poro increases w/ TOC)
 - Better Perm (there is perm in shale?)
- **Clay**
 - Less is better. Bossier Shale shows more clay content then HVS
Unconventional Resources

Haynesville Shale Program Timeline

Avg Daily Gas Prod for Month, MMcfpd

Well Count, To Sales
Well Count, Spud
Rig Count
Study Wells

• Preliminary Completion and Stimulation Design
 – XTO Well #1, Gregg County, July 2008
 – XTO Well #2, Harrison County, August 2008
 – XTO Well #3, Panola County, October 2008
 – XTO Well #4, Panola County, December 2008

• Other (why)
 – Delineation
 – Reservoir Characterization
 – Target Identification
Unconventional Resources

XTO Well #1, NW Panola County

• **Drilling Program**
 - Existing platform based on CV Lime, James Lime, Pettit, and Barnett Shale Horizontal
 - OBM based on network and industry reconnaissance

• **Casing Design** *(Used existing well design and knowledge gained from CV Lime Horizontal Program)*
 - (7” 32ppf x 4 ½” 13.5ppf P110 Liner)
 - Cemented Liner (No “Packers-Plus”, “Frac-Point”, or other ECP schemes)
 - Premium Connections
Unconventional Resources

XTO Well #1, NW Panola County

- **Completion and Stimulation Design**
 - Average Stimulated Lateral
 - 10-15 Stages
 - Pump Down Plug/Perf/Frac Scheme as opposed to “Packers-Plus” schemes (TCP stage 1)
 - CFPs as opposed to CBPs
 - High rate, large volume slickwater/LGEL frac; experimented w/ slickwater only and hybrid XLGEL
 - 40/80 HydroProp & 100 Mesh
 - Perforation Scheme
 - Longer gun length w/ fewer clusters/stage; Went to shorter gun length w/ more clusters/stage
 - Longer distance b/w perf clusters

- **Completion Execution, Equipment, and Logistics**
 - Completion Procedure
 - 15k Stack Arrangement
 - Flowback Equipment
 - Rig-up for consecutive plug/perf/frac operations
 - Securing water for consecutive plug/perf/frac operations

- **Production Facilities**

- **Other**
 - Securing acreage, forming units
 - Target selection
 - Strategically staking wells, wetlands and culture considerations
 - Securing gas take away, pipeline construction

Proprietary
Completion and Stimulation Design
- Short Stimulated Lateral
- 10-15 stages (did not drop stages due to less lateral length)
- Charged with task to frac w/ all slickwater
- More clusters per stage; Even less distance b/w perf clusters
 (maintaining same gross interval)
- Attempted slickwater w/ sand/sweep scheme; poor results
- Pumped a lot of H2O volume but little sand
Completion and Stimulation Design
- Long Stimulated Lateral (Longest HVS lateral at the time)
- 15-20 Stages
- Same (more) clusters per stage; Even less distance b/w perf clusters
- Slickwater/LGEL/XLGE Hybrid; good success rate
- Significant amount of sand pumped
- Covered more pay
Completion and Stimulation Design

- Average Stimulated Lateral
- 8-10 Stages
- More clusters per stage; <100’ b/w perf clusters
- Still had charge to accomplish all w/ slickwater:
 - Disciplined rate/pressure management during initial portion of job
 - Significant increase to pad volume
 - Continuous sand (no sand/sweeps)
 - Low sand concentration for extended water volume
 - Use of FR to increase viscosity
Simultaneous Activities

• **Immediate Recognition of Significant Volume of Equipment and Materials Required**
 - Had secured significant volume of high strength proppants directly through supplier (First Mover)
 - Securing significant volumes of freshwater at strategic locations (First Mover)
 - Identifying and building freshwater infrastructure
 - Securing Coiled-Tubing Units
 - Securing Frac Crews

• **Immediate Attention to Cost Reduction and Execution Efficiency**
 - Actually walking through every component of cost
 - Negotiation with every supplier/service provider involved
 - Revising and optimizing completion procedure and process

• **Organizational Structure Changes, Staffing, and Training**
Haynesville Shale Frac Type Curve

Legend:
- Average Type Curve
- Pressure Window
- Point of No Return Line
- Losing Perfs / Perf Fill

Check points:
1. Ball Seat
2. Break down
3. Filling Csg w/ Slickwater
4. Displacement of all FW w/ SW
5. Design Rate Pressure Peak
6. Minimum Pressure
7. Point of No Return

Pressure (psi) vs. Time (minutes)

Key pressures:
- 0.25 ppa 100 mesh
- 0.25-.45 ppa Sand
- 0.45-.75 ppa Sand
- 0.75-1.25 ppa Sand

Time (minutes): 0 60 120 180 240 300 360
Pressure (psi): 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500
Haynesville Shale Frac Type Curve - Early Time

Check points:
1. Ball Seat
2. Break down
3. Filling Csg w/ Slickwater
4. Displacement of all FW w/ SW
5. Design Rate Pressure Peak

Legend:
- Average Type Curve
- Pressure Window
- Slurry Rate Trend
- 5 bpm increments as pressure allows
- 5-8 bpm increments as pressure allows
- Design Rate
- Slicking up pipe

5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500
0 15 30 45 60 75

Time (minutes)
Pressure (psi)
Unconventional Resources

Completion Summary/Cost Efficiency

- **Cover the most rock possible**
 - Contact the most pay

- **Perf clusters/stage, distance b/w clusters,**
 - Determine rate/perf cluster desired
 - Space stage length for most rate per perf cluster
 - More rock stimulated better results
 - Decrease spacing b/w clusters

- **Proppant**
 - How much proppant per perf cluster/stage
 - Do we need high strength large proppant??
 - Is sand or rate more important

- **Fluid**
 - More volume or more sand
 - Costs associated to pumping gels

- **Time is money**
 - More fracs/day saves money
 - Spending a little more money per stage saves overall job costs i.e. shorter fracs more proppant placed in given frac time
Unconventional Resources

A Running Machine

- Repeatable Drilling Program and Casing Design

- Repeatable Completion and Stimulation Design
 - Repeatable procedure
 - Well prep standardization
 - Standardized rig-up
 - Repeatable frac design and plug/perf/frac proc
 - Drill-out procedure
 - Flowback guidelines
 - Production facilities
 - Tube up equipment and guidelines

- Materials and Equipment Identified, Secured and/or in Process

- Organizational Structure and Staffing
Unconventional Resources

Haynesville Shale Program Timeline

- Spud 1st HZ, #1H Sept 08
- 1st Pilot, HZ #3H, June 08
- 2nd Pilot, HZ #2H, Aug 08

< 9 months

Avg Daily Gas Prod for Month, MMcfpd
Well Count & Rig Count

- Well Count, To Sales
- Well Count, Spud
- Rig Count

Proprietary
Unconventional Resources

XTO Haynesville Shale Completion Process

- Completion Preparation
- Consecutive Stage Work
- Drill-out and Flowback
- Tube-Up
Unconventional Resources

Completion Preparation

Drilling Rig Move, Location Dress and Layout → MIRU WOR, NU BOPs → PU Workstring, Make Bit/Scraper Run → Polish TOL → RUN USIT; Pressure Test

RU Frac Stack and Flowback Equipment → MIRU CTU, Mill/Motor/Mr. Clean, Pressure Test → TCP; Pressure Up on Formation → Waiting on Frac Equipment
Consecutive Stage Work

- Seat ball/break down
- Begin AM frac
- Pumpdown Tools
- Set Plug/Perf
- Drop CFP ball
- Begin PM frac
- Pumpdown Tools
- Seat ball/break down

4 Stages Per Day (24hrs)
Some details on today’s completions

- 2’ gun length, 6 SPF, 60 Deg
- 4-6 clusters per stage, moving to 5-7 clusters as heel is approached
- 50-100’ b/w clusters
- 250,000 to 300,000 lbs proppant/stg.
- 8,000 to 10,000 lbs 100 mesh
- 12,000 to 15,000 bbls Slickwater and or Linear Gel depending on geology
- High rate (70-100+ BPM)
Drillout, Flowback, and Tube-Up

• **Drill-out and Flowback**
 - Restricted flow flowback. Choke size determined on well’s pressure. Maintain good flowing pressure. Do not open to “world”.
 - Drillout w/ 2” CT
 - “Reverse Drag” mill
 - 2 Plugs then short trip to circulate cuttings
 - 10 Plugs per mill
 - Close attention to maintaining bbl in – bbl out
 - Disciplined and patient flowback (maintain pressure)

• **Tube-Up**
 - Tube-up within 90-120 days
 - Lubricate and set permanent packer with profile plug in place
 - Run tubing, SL retrieve plug
Production practices

- **Wells make little fluid**
 - Industry has showed several different methods of de-watering HVS wells
 - Pumping unit assist
 - Capillary siphon strings to help alleviate corrosion/scaling tendencies

- **Wells are sweet until we mess with them**
 - Some wells are showing high levels of H2S
 - In-situ or frac induced?
 - High H2S wells are using scavenger or amine towers to drop to pipeline specs
 - CO2 is low in XTO areas, however, some areas have reported 15% + CO2 concentration

- **Time will tell how to optimize best practices for producing HVS wells**
Always Refining

- Tweaking procedure details
- CFP mill-out procedure and equipment
- Perforation scheme and frac sensitivities
- Adapting fracs to changing cost structure
- The infamous “Toe Frac”
- Multi-Well pad considerations
- Offset operations consideration
- Other operational issues... “What to do if” Scenarios
 - Unsuccessful Pressure Test
 - Zone won’t take sand
 - Screen-out
 - Other
Characterization of the XTO Process

Proprietary

You gotta break eggs to make mayonnaise.”
– Kevin Brand, Production Superintendent, East Texas Division

“If it doesn’t work, it sure missed a good chance.”
– Bo Sanders, Production Superintendent, East Texas Division

“You have ‘working managers’…”
– Ken Kirby, Senior V.P., East Texas Division

“We do our research from outside the wellbore.”
– Keith Underwood, Engineering Manager, East Texas Division

Unconventional Resources

Optimization

Rapid Deployment of Working Model
(Manufacturing Phase)

Preliminary Design
(Adjusting the Conceptual Design based on empirical data to arrive at a “Working Model”)

Kent H. Kansala (XTO Energy)

Questions?