Geophysical    Engineering
Geophysical Engineering
Future Students  |  Current Students  |  Parents  |  Alumni   |    Giving   |   Faculty & Staff   |   Visitors  |   Athletics

GEOP  509

Xiaobing Zhou, Associate Professor of Geophysicis

Problems  in  Gravity  and  Magnetic  Prospecting

Lecture: T & R 12:00pm-1:15pm at ELC329

Instructor: Dr. Xiaobing Zhou, Email: xzhou@mtech.edu, Tel: 496-4350

Office Hours: M/W/F 10:00 am -11:00am, ELC 304

Topics & references
  1. Potential theory:
    • Blakely, R. J., Potential Theory in Gravity & Magnetic Applications, Cambridge University Press, 1996.
    • Kellogg, O. D., Foundations of potential theory: Dover Publ. Inc., 1979.
    • Telford, W. M., L. P. Geldart, and R. E. Sheri , Applied Geophysics, 2nd Edition, Cambridge University Press, 1991.
    • Nettleton's Gravity and Magnetics in Oil Prospecting (McGraw-Hill, 1976);
    • Rao, B. S. R., Murthy, I. V. R., Gravity and magnetic methods of prospecting, New Delhi : Arnold-Heinemann, 1978. TN269.R2.
    • 97-0725 Potential-Field Geophysical Software for the PC, version 2.2. (Supersedes Open-File Reoprt 92-18.)
    • While, J., A. Jackson, D. Smit, and E. Biegert, Spectral analysis of gravity gradiometry profiles, Geophysics, 71(1), J11-J22, 2006.
    • Rasmussen, R., and L. B. Pederson, End corrections in potential field modeling. Geophys. Prosp. 27, 749-760, 1979.
  2. Large scale gravity and magnetic mapping: satellite remote sensing method
    • Regan, R. D., Remote sensing method, GEOPHYSICS, 45(11), 1685-1689, 1980.
  3. Inversion theory in general:
    • Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, Orlando, FL, 1984.
    • Parker, R. L., Understanding inverse thory. Annual Reviews of Earth and Planetary Sciences, 5, 35-64, 1977.
  4. Gravity modeling and inversition
    • Silva, J. B. C., and V. C. F. Barbosa, Interactive gravity inversion, Geophysics, 71(1), J1-J9, 2006.
    • 02-363 Preliminary Gravity Inversion Model of Frenchman Flat Basin, Nevada Test Site, Nevada
    • Last, B. J., and Kubik, K., Compact gravity inversion: Geophysics, 48, 713–721, 1983.
    • Lines, L. R., Schultz, A. K., & Treitel, S., Coorperative inversion of geophysical data. Geophysics, 53, 8-20, 1988.
    • Barbosa, V. C. F., and Silva, J. B. C., Generalized compact gravity inversion, Geophysics, 59, 57–68,1994.
    • Maurizio Fedi et al., 3-D inversion of gravity and magnetic data with depth resolution, Geophysics, 64, 452, 1999
  5. Magnetic field modeling and inversion
    • Bott, M. H. P., Solution of the linear inverse problem in magnetic interpretation with application to oceanic magnetic anomalies.
    • Geophysical Journal of the Royal Astromical Society, 13, 313-323, 1967.
    • Li, Y., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics, 61, 394–408.
    • Menke, W., Geophysical data analysis : discrete inverse theory: Academic Press Inc., New York. Pages: 260, 1984.
    • Parker, R. L., L. Shure, J. A. Hildenbrand, The Application of inverse theory to seamount magnetism. Reviews of Geophysics, 25, 17-40,
    • 1987.
  6. Gravity and Magnetic Surveys
    • Casten U., and Gram, Chr., Recent developments in underground gravity surveys. Geophysical Prospecting, 37, 73-90, 1989.
    • 98-0333 Montana Aeromagnetic and Gravity Maps and Data
  7. Magnetic gradiometry
    • Harald von der Osten-Woldenburg, Bruno Chaume, and Walter Reinhard, New archaeological discoveries through magnetic gradiometry: The early Celtic settlement on Mont Lassois, France, The Leading Edge 2006 25: 46-48. [PDF].
    • W. E. Doll, T. J. Gamey, L. P. Beard, and D. T. Bell, Airborne vertical magnetic gradient for near-surface applications. The Leading Edge 2006 25: 50-53. [PDF].
    • Doug Hrvoic and Matthew R. Pozza, Mapping marine ferrous targets using real-time 3D analytic signal data, The Leading Edge 2006 25: 54-56. [PDF].
    • Stephen Reford, Gradient enhancement of the total magnetic field, The Leading Edge 2006 25: 59-66. [PDF].
    • M.F. Mushayandebvu and J. Davies, Magnetic gradients in sedimentary basins: Examples from the Western Canada Sedimentary Basin, The Leading Edge 2006 25: 69-73. [PDF].
    • P.W. Schmidt and D.A. Clark, The magnetic gradient tensor: Its properties and uses in source characterization, The Leading Edge 2006 25: 75-78. [PDF].
    • Clive Foss, Improvements in source resolution that can be expected from inversion of magnetic field tensor data, The Leading Edge 2006 25: 81-84. [PDF].
    • Desmond J. FitzGerald and Horst Holstein, Innovative data processing methods for gradient airborne geophysical data sets, The Leading Edge 2006 25: 87-94. [PDF].
  8. Aeromagnetic survey and intepretation
    • Reynolds, R. L., J. G. Rosenbaum, M. R. hudson, and N. S. Fishman, "Rock magnetism, the distribution of magnetic minerals in the earth's crust, and aeromagnetic anomalies", in Geologic Application of Modern Aeromagnetic Surveys, W. F. Hanna (ed.), 24-45, U. S. Geological Survey Bulletin 1924, Denver, CO (1990).
  9. International Geomagnetic Reference Field
    • International Association of Geomagnetism and Aeronomy (IAGA) Division V, Working Group 8: Analysis of the main field and secular variation, R. A. Langel, Chairman, "International Geomagnetic Reference Field, 1991 revision," Geophysics, 57, 956-959, 1992.
    • Langel, R. A., "International geomagnetic reference field: the sixth generation," Journal of Geomagnetism and Geoelectricity, 44, 679-707, 1992.
    • Langel, R. A., and Estes, R. H., "A geomagnetic field spectrum," Geophysical Research Letters, 9, 250-253, 1982.
    • International Association of Geomagnetism and Aeronomy (IAGA) Division 1, Working Group 1, D. R. Barraclough, Chairman, "International Geomagnetic Reference Field Revision 1987". Geophysics 53, 576-578, 1988.
    • Peddie, N.W., Chairman, International Geomagnetic Reference Field 1980 A Report by IAGA Division I, Working Group I. Geophysics 47, 841-842, 1982.
    • International Association of Geomagnetism and Aeronomy (IAGA) Division 1, Working Group 1, N.W. Peddie, Chairman, International Geomagnetic Reference Field Revision 1985. Geophysics 51, 1020-1023, 1986.
    • Gregory N. Tsokas, Alexandros Stampolidis, Antonis D. Angelopoulos, and Stefanos Kilias, Analysis of potential field anomalies in Lavrion mining area, Greece. Geophysics 63, 1965-1970, 1998.
    • Norman W. Peddie, International geomagnetic reference field—Its evolution and the difference in total field intensity between new and old models for 1965–1980. Geophysics 48, 1691-1696, 1983.
    • Robert D. Regan, The current status of the IGRF and its relation to magnetic surveys. Geophysics 48, 997-998, 1983.
    • AD HOC COMMITTEE ON MAGNETIC FIELD MODELS, Geophysics 41, 796-797, 1976.
    • Robert D. Regan and Joseph C. Cain, REVISION OF THE IGRF: A Summary Report on the Zmuda Memorial Conference on Geomagnetic Field Models. Geophysics 40, 907-908, 1975.
    • Robert D. Regan and Joseph C. Cain, THE USE OF GEOMAGNETIC FIELD MODELS IN MAGNETIC SURVEYS. Geophysics 40, 621-629, 1975.
  10. Tidal correction
    • Joseph L. Adler, Simplification of tidal corrections for gravity meter surveys. Geophysics, 7, 35-44 (1942).
    • Longman, I. M., Formulas for computing the tidal acceleration due to the moon and the sun. Journal of Geophysical Research, 64, 2351-2355 (1959).
  11. Terrain correction
    • Cogbill, A. H., Gravity terrain corrections calculated using Digital Elevation Models, Geophysics, 55(1), 102-106, 1990.
    • Gettings, M. E., Near-station terrain corrections for gravity data by a surface-integral technique, U.S. Geological Survey Open-File Report 82-1045, i+14 pages, 1982.
    • Godson, R. H., and Plouff, D., BOUGUER Version 1.0, A microcomputer gravity-terrain-correction program, Open-file Report 88-644, U. S. Geological Survey, 1988.
    • Hammer, S., Terrain corrections for gravimeter stations. Geophysics, 4, 184-194, 1939.
    • Hammer, S., Critique of terrain corrections for gravity stations. Geophysics, 47, 839-840, 1982.
    • Krohn, D. H., Gravity terrain corrections using multiquadric equations, Geophysics, 41, 266-275, 1976.
    • LaFehr, T. R., An exact solution for the gravity curvature (Bullard B) correction, Geophysics, 56, 1179-1184, 1991.
    • Plouff, D., Digital terrain corrections based upon geographic coordinates [abstract], Geophysics, 31, 1208, 1966.
    • Plouff, D., Preliminary documentation for a FORTRAN program to compute gravity terrain correcton based on topography digitized on a geographic grid, Open-file Report 77-535, U. S. Geological Survey, 1977.
    • Spielman, J. B., and Ponce, D. A., Hand, T. C, A FORTRAN program to calculate inner-zone terrain corrections, Open-file Report 84-777, U. S. Geological Survey, 1984.
  12. Isostatic correction
    • Jachens, R. C., and Roberts, C. W., Documentation of a FORTRAN Program, 'Isocomp', for Computing Isostatic Residual Gravity, Open-File Report 81-574, U. S. Geological Survey (1981).
    • Simpson, R. W., Jachens, R. C., and Blakely, R. J., AIRYROOT: A Fortran Program for Caculating the Gravitational Attraction of an Airy Isostatic Root Out to 166.7 km, Open-File Report 83-883, U. S. Geological Survey (1983).
    • Simpson, R. W., Jachens, R. C., and Blakely, R. J., and Saltus, R. W., A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. Journal of Geophysical Research, 91, 8348-8372, 1986.
  13. Magnetic field instrumentation
    • Valery Korepanov and Rikhard Berkman, Digital flux-gate magnetometer structural analysis. Meas. Sci. Technol., 10, 734-737, 1999. doi:10.1088/0957-0233/10/8/308.
  14. For gravity correction or reduction:
    • LaFehr, T. R., Standardization in gravity reduction, Geophysics, 56, 1170-1178, 1991..
    • Forsythe, G. E., Malcolm, M. A., and Moler, C. B. (1977) Computer Methods for Mathematical Computations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, xi+259 pages..
    • Franke, Richard (1982) Scattered data interpolation: tests of some methods, Mathematics of Computation, 38(157), 181-200..
    • Hardy, Roland L. (1971) Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, 76, 1905-1915..
    • Renka, Robert J. (1984) Algorithm 624, Triangulation and interpolation at arbitrary points in a plane, ACM Trans. on Math. Software, 10(4), 440-442..
    • Renka, R. J. and A. K. Cline (1984) A triangle-based C1 interpolation method, Rocky Mt. Jour. of Mathematics, 14(1), 223-237..
    • Renka, R. J. (1996) Algorithm 751: TRIPACK: A constrained two-dimensional Delauney triangulation package, ACM Trans. on Math. Software, 22(1), 1-8..
    • Renka, R. J. (1996) Algorithm 752: SRFPACK: Software for scattered data fitting with a constrained surface under tension, ACM Trans. on Math. Software, 22(1), 9-17..
    • U. S. Geological Survey (1982) Digital Elevation Models, Data Users Guide 5, available from U. S. Geological Survey, National Cartographic Information Center, Reston, Virginia.
General references for gravity and magnetic exploration
  • Fowler, C.M.R., The Solid Earth: An Introduction to Global Geophysics, Cambridge University Press, 1990.
  • Gravity & Magnetic Geophysical Software
  • D.S. Parasnis, Principles of Applied Geophysics - Fifth Edition December 26, 1996)
  • Online course: The Berkeley Course in Applied Geophysics
  • Geophysical data grids for the conterminous United States [electronic resource].
  • Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Envelope [ebook].
  • Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies, Committee on Microgravity Research, Space Studies Board, Commission on Physical Sciences, Mathematics, and Applications, National Research Council (National Academy Press, Washington, D.C., 2000). (eBook)
  • urger, R. H., Applied Geophysics, Norton, W. W. & Company, Inc., 2005 (to appear).
  • Kearey, P., and M. Brooks, An Introduction to Geophysical Exploration, 3rd edition, Blackwell Science, Inc., 2002.
  • Mussett, A. E., and M. A. Khan, Looking into the Earth : An Introduction to Geological Geophysics, Cambridge University Press, 2000.
  • Reynolds, J., An Introduction to Applied and Environmental Geophysics, John Wiley & Sons Canada, Ltd., 1997.
  • Parasnis, D. S., Principles of Applied Geophysics, 5th Edition, Kluwer Boston, Inc., 1997.
  • Telford, W. M., L. P. Geldart, R. E. Sheriff, and D. A. Keys, Applied Geophysics, 2nd Edition, Cambridge University Press, 1990.
  • Milsom, J., Field Geophysics, Open University Press, 1989.
  • Griffiths, D. H., and R. F. King, Applied Geophysics for Geologists & Engineers, 2nd edition, Oxford ; New York : Pergamon Press, 1981.
  • Introduction to Geophysical Exploration